Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Xét 2 tam giác vuông ΔABI và ΔDBI có:
Cạnh huyền BI chung
\(\widehat{ABI}=\widehat{IBC}\left(GT\right)\)
=> ΔABI = ΔDBI (c.h - g.n)
b/ Có: ΔABI = ΔDBI (cmt)
=> AB = BD (2 cạnh tương ứng)
=> ΔABD cân tại B
Ta có: \(\widehat{ABI}=\widehat{IBC}\left(GT\right)\)
=> BI là phân giác của \(\widehat{ABC}\)
Hay: BI là phân giác của \(\widehat{ABD}\)
Lại có: ΔABD cân tại B (cmt)
=> BI là đường trung trực của ΔABD
Hay: BI là đường trung trực của AD
c/ Ta có: ΔABI = ΔDBI (cmt)
=> AI = ID (2 cạnh tương ứng)
Xét ΔAIE và ΔDIC ta có:
\(\widehat{IAE}=\widehat{IDC}\left(=90^0\right)\)
AI = ID (cmt)
\(\widehat{AIE}=\widehat{DIC}\) (đối đỉnh)
=> ΔAIE = ΔDIC (g - c - g)
=> IE = IC (2 cạnh tương ứng)
ΔIDC vuông tại D
=> ID < IC (cạnh huyền > cạnh góc vuông)
Mà: IE = IC (cmt)
=> ID < IC
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔBED và ΔBEC có
BD=BC
góc DBE=góc CBE
BE chung
Do đó: ΔBED=ΔBEC
b: Ta có: ΔBDC cân tại B
mà BI là đường phân giác
nên BI là đường cao, ID=IC
c: AH vuông góc với DC
BI vuông góc với DC
Do đó: AH//BI
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Xét △ABC vuông tại A có: ABC + ACB = 90o (tổng 2 góc nhọn trong △ vuông)
=> 53o + ACB = 90o
=> ACB = 37o
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: ABE = DBE (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-gn)
c, Xét △FBH và △CBH cùng vuông tại H
Có: BH là cạnh chung
FBH = CBH (gt)
=> △FBH = △CBH (cgv-gnk)
=> BF = BC (2 cạnh tương ứng)
d, Xét △ABC vuông tại A và △DBF vuông tại D
Có: AB = BD (△ABE = △DBE)
ABC là góc chung
=> △ABC = △DBF (cgv-gnk)
Ta có: AB + AF = BF và BD + DC = BC
Mà AB = BD (cmt) ; BF = BC (cmt)
=> AF = DC
Xét △AEF và △DEC
Có: AF = DC (cmt)
AE = DE (△ABE = △DBE)
=> △AEF = △DEC (cgv)
=> AEF = DEC (2 góc tương ứng)
Ta có: AED + DEC = 180o (2 góc kề bù)
=> AED + AEF = 180o
=> DEF = 180o
=> 3 điểm D, E, F thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
B A C E D
a, Vì BA = BC => \(\Delta ABC\) cân tại B => \(\widehat{A}=\widehat{C}\)
b, Vì BA = BC => BE = BD
Xét \(\Delta BDA\) và \(\Delta BEC\) có:
BA = BC (gt)
BD = BE (cmt)
\(\widehat{B}\): chung
Do đó \(\Delta BDA=\Delta BEC\left(c.g.c\right)\)
=> \(\widehat{BDA}=\widehat{BEC}\) (2 góc t/ứ)
c, Vì \(\Delta BDA=\Delta BEC\Rightarrow\widehat{BAD}=\widehat{BCE}\) (2 góc tương ứng)
Mà \(\widehat{A}=\widehat{C}\) (câu a)
Do đó \(\widehat{A}-\widehat{BAD}=\widehat{C}-\widehat{BCE}\) hay \(\widehat{CAD}=\widehat{ACE}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình bạn tự vẽ nha!
Ta có:
AH_|_BC(AH là đường cao tam giác ABC)
DK_|_BC(DK là đường trung trực của BC)
=>AH//DK(t/c đường thẳng song song)
=>góc AED=góc EDK(so le trong) (1)
=>góc BEH=góc EDK( 2 góc đồng vị) (2)
Từ (1),(2) suy ra:
góc AED=góc BEH=góc EDK=góc BDK(do E là giao điểm của AH và BD)
Mặt khác:
Xét tam giác BKD và tam giác DKC,có:
DK cạnh chung
BK=KC( K là trung điểm của BC)
góc BKD=góc DKC=1 vuông
=> tam giác BKD=tam giác DKC(c.g.c)
=>BD=DC
=>tam giác BDC cân tại D
Nên góc BDK=góc CDK(t/c tam giác cân) (3)
Lại do: AH//DK
=>góc CDK=góc DAH( 2 góc đồng vị) (4)
Từ (3),(4)=>góc BDK=góc DAH
Mà góc AED=góc BDK( so le trong)
E là giao điểm của BD và AH(gt)
Nên E nằm giữa BD và AH
=>góc DAE=góc DAH=góc AED
=>tam giác ADE cân tại D ( đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét 2 \(\Delta\) \(ABD\) và \(EBD\) có:
\(AB=EB\left(gt\right)\)
\(\widehat{ABD}=\widehat{EBD}\) (vì \(BD\) là tia phân giác của \(\widehat{B}\))
Cạnh BD chung
=> \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)
b) Theo câu a) ta có \(\Delta ABD=\Delta EBD.\)
=> \(AD=ED\) (2 cạnh tương ứng).
c) Theo câu a) ta có \(\Delta ABD=\Delta EBD.\)
=> \(\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).
Mà \(\widehat{BAD}=90^0\left(gt\right)\)
=> \(\widehat{BED}=90^0.\)
Câu d) thì mình nghĩ đã nhé.
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H D E I
a) Ta có: AB < AC (gt)
Suy ra: \(\widehat{ACB}< \widehat{ABC}\) (quan hệ giữa góc và cạnh đối diện trong tam giác)
\(\Delta ABH\) vuông tại H
\(\Rightarrow\) \(\widehat{BAH}+\widehat{ABH}=90^o\)
\(\widehat{ABH}=90^o-\widehat{BAH}\)
\(\widehat{ABH}=90^o-60^o\)
Vậy: \(\widehat{ABH}=30^o\)
b) Ta có: \(\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^o}{2}=30^o\)
Xét hai tam giác vuông AIB và BHA có:
AB: cạnh huyền chung
\(\widehat{BAI}=\widehat{ABH}=30^o\)
Vậy: \(\Delta AIB=\Delta AHB\left(ch-gn\right)\)
c) Vì \(\Delta AIB=\Delta AHB\left(cmt\right)\)
\(\Rightarrow\) \(\widehat{BAH}=\widehat{ABI}\) (hai góc tương ứng)
Mà \(\widehat{BAH}=60^o\)
\(\Rightarrow\) \(\widehat{ABI}=60^o\)
Do đó: \(\Delta ABE\) là tam giác đều
d) Ta có: AB < AC (gt)
Suy ra: DC > DB (quan hệ giữa đường xiên và hình chiếu của chúng)
Mik cx ko chắc lắm nha
các bn giúp mik với. Mik sắp phải nộp bài rồi. PLZ. Thanks mấy bn trước nha