\(c.\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(và\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

15 tháng 7 2019

\(a,\frac{x}{19}=\frac{y}{21}\) và 2x - y = 34

Ta có : \(\frac{x}{19}=\frac{y}{21}\Leftrightarrow\frac{2x}{38}=\frac{y}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

Vậy : \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=38\\y=42\end{cases}}\)

15 tháng 7 2019

\(b,\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và x + y + z =  60

Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{60}{12}=5\)

Vậy : \(\hept{\begin{cases}\frac{x}{3}=5\\\frac{y}{4}=5\\\frac{z}{5}=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=15\\y=20\\z=25\end{cases}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-2}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{2x-2+3y-6-z+2}{4+9-4}=\frac{89}{9}.\)

Đến đây tự giải nốt phần sau easy rồi

Study well 

2 tháng 9 2019

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-2}{9}=\frac{z-2}{4}\)

+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x-2}{4}=\frac{3y-2}{9}=\frac{z-2}{4}=\frac{2x+3y-z}{4+9-4}=\frac{95}{9}\)

Suy ra \(\frac{2x-2}{4}=\frac{95}{9}\Rightarrow x=\frac{199}{9}\)

            \(\frac{3y-2}{9}=\frac{95}{9}\Rightarrow y=\frac{97}{3}\)

        \(\frac{z-2}{4}=\frac{95}{9}\Rightarrow z=\frac{398}{9}\)

Vậy \(x=\frac{199}{9};y=\frac{97}{3};z=\frac{398}{9}\)

Chúc bạn học tốt !!!

2 tháng 7 2019

Ta có: \(\frac{x-1}{2}=\frac{2\left(x-1\right)}{2.2}=\frac{2x-2}{4}\)

            \(\frac{y-2}{3}=\frac{3\left(y-2\right)}{3.3}=\frac{3y-6}{9}\)

\(\Rightarrow\)\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}\)

\(=\frac{50-2-6+3}{9}=5\)

Ta có: \(\frac{2x-2}{4}=5\Rightarrow x=11\)

            \(\frac{3y-6}{9}=5\Rightarrow y=17\)

           \(\frac{z-3}{4}=5\Rightarrow z=23\)

2 tháng 7 2019

Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

  \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{50-5}{9}=\frac{45}{9}=5\)

=> \(\hept{\begin{cases}\frac{x-1}{2}=5\\\frac{y-2}{3}=5\\\frac{z-3}{4}=5\end{cases}}\) => \(\hept{\begin{cases}x-1=5.2=10\\y-2=5.3=15\\z-3=5.4=20\end{cases}}\) => \(\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)

Vậy ...

Dãy tỉ số bằng nhau ạ!

Áp dụng tính chất của dayxc tỉ số bằng nhau ta có :

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-2}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{2x-2+3y-6-z+2}{4+9-4}=\frac{89}{9}.\)

Tù đó rồi 

=> z , y , z nha easy quá còn j nx

30 tháng 11 2015

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=>\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

áp dụng .. ta có :

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-2-6+3}{9}=\frac{45}{9}=5\)

=>x-1/2=5=>x-1=10=>x=9

=>y-2/3=5=>y-2=15=>y=13

=>z-3/4=5=>z-3=20=>z=17

30 tháng 11 2015

quên mất kết quả là :

=>x-1/2=5=>x-1=10=>x=11

=>y-2/3=5=>y-2=15=>y=17

=>z-3/4=5=>z-3=20=>z=23 

mik nhầm hjhj

11 tháng 5 2019

a, Ta có :   \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) =>  \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{29}{29}=1\)

                                                        ( Tính chất dãy tỉ số bằng nhau )

=> x2 = 4  ;  y2 = 9  ;  z2 = 16

=> x = 2 hoặc x = - 2  ; y = 3 hoặc y = - 3  ; z = 4 hoặc z = - 4 

Vậy x = 2 hoặc x = - 2  ; y = 3 hoặc y = - 3  ; z = 4 hoặc z = - 4 

11 tháng 5 2019

b, Ta có :  \(\frac{x}{5}=\frac{y}{4}=\frac{z}{2}\)   =>   \(\frac{x^3}{125}=\frac{y^3}{64}=\frac{z^3}{8}=\frac{x^3-y^3+z^3}{125-64+8}=\frac{69}{69}=1\)

                                                            ( Tính chất dãy tỉ số bằng nhau )

=> x3 = 125  ; y= 64  ; z3 = 8

=> x = 5 ; y = 4 ; z = 2

Vậy x = 5 ; y = 4 ; z = 2