\(\frac{2020\cdot2022-20}{2020\cdot2021+2000}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2020

C=\(\frac{2020.2022-20}{2020.2021+2000}\)=\(\frac{2020.2021+2020-20}{2020.2021+2000}\)=\(\frac{2020.2021+2000}{2020.2021+2020}\)=\(1\)

1 tháng 8 2020

\(C=\frac{2020\cdot2022-20}{2020\cdot2021+2000}=\frac{2020\cdot2021+2020-20}{2020\cdot2021+2000}=\frac{2020\cdot2021+2000}{2020\cdot2021+2000}=1\)

30 tháng 7 2019

Gọi tổng đó là A:

\(A=\frac{19}{20}+\frac{19}{20}\times\frac{101}{101}+\frac{19}{20}\times\frac{10101}{10101}+........+\frac{19}{20}\times\frac{101...01}{101...01}\)

\(A=\frac{19}{20}\times2011=1910.45\)

30 tháng 7 2019

                                                            Bài giải

\(\frac{19}{20}+\frac{1919}{2020}+\frac{191919}{202020}+...+\frac{1919...19}{2020...20}\) ( ( Vì mỗi phân số liền sau phân số kia đều được tính bằng số liền trước nhân với \(\frac{101}{101}\) ; \(\frac{10101}{10101}\) ; \(\frac{1010101}{1010101}\) ;  ... ;  từ đó ta tính được số số hạng của tổng là 1005 )

\(=\frac{19}{20}+\frac{1919\text{ : }101}{2020\text{ : }101}+\frac{191919\text{ : }10101}{202020\text{ : }10101}+...+\frac{1919...19\text{ : }10101...01}{2020...20\text{ : }10101...01}\) ( ở phân số cuối cùng ở tử số có 10101...01 gồm 1006 số 1 và 1005 số 0 và ở mẫu số cũng vậy ) 

\(=\frac{19}{20}+\frac{19}{20}+\frac{19}{20}+...+\frac{19}{20}\) 

\(=\frac{19}{20}\cdot1005\)

\(=\frac{3819}{4}\)

26 tháng 4 2019

Ta có :

\(N=\frac{2018+2019+2020}{2019+2020+2021}\)

\(=\frac{2018}{2019+2020+2021}+\frac{2019}{2019+2020+2021}+\frac{2020}{2019+2020+2021}\)

Mà \(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)

\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)

\(\Leftrightarrow M>N\)

28 tháng 7 2020

Trả lời:

Ta có: 

\(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)

\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)

\(\Rightarrow\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2021}>\frac{2018+2019+2020}{2019+2020+2021}\)

hay \(M>N\)

Vậy \(M>N\)

24 tháng 5 2020

Ta có: \(\frac{2019}{2020}>\frac{2019}{2020+2021};\frac{2020}{2021}>\frac{2020}{2020+2021}\)

=> \(\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019}{2020+2021}+\frac{2020}{2020+2021}=\frac{2019+2020}{2020+2021}\)

=> A > B.

21 tháng 3 2020

N =2019+2020/2020+2021

=2019/2020+2021  +   2020/2020+2021

Ta có:

2019/2020>2019/2020+2021

2020/2021 > 2020/2020+2021

=>M>N

10 tháng 3 2020

ta có \(A=\frac{2020^{10}+2}{2020^{11}+2}=>2020A=\frac{2020^{11}+4040}{2020^{11}+2}=1+\frac{4038}{2020^{11}+2}\)(1)

\(B=\frac{2020^{11}+2}{2020^{12}+2}=>2020B=\frac{2020^{12}+4040}{2020^{12}+2}=1+\frac{4038}{2012^{12}+2}\)(2)

từ 1 and 2 => 2020B<2020A

=> A>B

Ta có B=\(\frac{2020^{11}+2}{2020^{12}+2}\)

suy ra \(B< \frac{\left(2020^{11}+2\right)+2018}{\left(2020^{12}+2\right)+2018}=\frac{2020^{11}+2020}{2020^{12}+2020}=\frac{2020\left(2020^{10}+2\right)}{2020\left(2020^{11}+2\right)}=\frac{2020^{10}+2}{2020^{11}+2}\)

nên A > B

30 tháng 7 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)

=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)

Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)

=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)

=> 10B < 10A

=> B < A

b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)

Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)

=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> B < A

13 tháng 2 2022

sai rồi

16 tháng 4 2020

Ta có : \(\frac{2019}{2020}=1-\frac{1}{2020}\)

            \(\frac{2020}{2021}=1-\frac{1}{2021}\)

Vì \(\frac{1}{2020}>\frac{1}{2021}\) nên \(1-\frac{1}{2020}< 1-\frac{1}{2021}\)

\(\Rightarrow\frac{2019}{2020}< \frac{2020}{2021}\)

Ta có : \(\frac{672}{2017}< \frac{673}{2017}< \frac{673}{2020}\)

\(\frac{\Rightarrow672}{2017}< \frac{673}{2020}\)

16 tháng 4 2020

1.So sánh phân số: \(\frac{2019}{2020}\) và  \(\frac{2020}{2021}\)

Ta có : \(\frac{2019}{2020}\) +  \(\frac{1}{2020}\) =  \(\frac{2020}{2020}\) =  1

           \(\frac{2020}{2021}\) +  \(\frac{1}{2021}\) =  \(\frac{2021}{2021}\) =  1

  \(\frac{1}{2020}\)  >  \(\frac{1}{2021}\) nên  \(\frac{2019}{2020}\)  <  \(\frac{2020}{2021}\)  

Mình chỉ biết mỗi câu này thôi, mình chắc chắn với bạn là câu này đúng không sai đâu

~ Học tốt ~

20 tháng 5 2020

chắc chắn ko bn

AH
Akai Haruma
Giáo viên
26 tháng 5 2020

Hữu Thắng: bạn đọc lời giải mà còn không biết được nó đúng hay sai ạ?