Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(A=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(A=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{100}-\frac{99}{100}\)
\(A=-\frac{98}{100}=-\frac{49}{50}\)
C = \(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{100}-\frac{99}{100}=-\frac{49}{50}\)
\(\Rightarrow50C=50.\left(-\frac{49}{50}\right)=-49\)
mk moi giai violympic =50 sao đó
mk nghi z
mk thi co 10 cau mk cung giai cau do nhung co dc 90 diem o
ma mk nghi chac cau do dung
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-1+\frac{1}{100}\)
\(C=\frac{-49}{50}\)
C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1
C = 1/100 - (1/100.99 + 1/99.98 + 1/98.97 + ... + 1/3.2 + 1/2.1)
C = 1/100 - (1/1.2 + 1/2.3 + ... + 1/98.99 + 1/99.100)
C = 1/100 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/98 - 1/99 + 1/99 - 1/100)
C = 1/100 - (1 - 1/100)
C = 1/100 - 99/100
C = -98/100 = -49/50
=> C = \(-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{99.100}+\frac{1}{100}\)
=> C = \(-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)+\frac{1}{100}\)
=> C = \(-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{100}\)
=> C = \(-\left(1-\frac{1}{100}\right)+\frac{1}{100}\)
=> C =\(-1+\frac{1}{100}+\frac{1}{100}\)
=> C = \(-1+\left(\frac{1}{100}+\frac{1}{100}\right)\)
=> C = \(-1+\frac{1}{50}\)
=> C = \(-\frac{49}{50}\)
KL : C = \(-\frac{49}{50}\)
a) \(\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99}-\left(\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
đặt \(A=\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
\(A=1-\frac{1}{99}\)
\(A=\frac{98}{99}\)
thay A vào, ta được :
\(\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)
b) \(\frac{2}{100.99}-\frac{2}{99.98}-...-\frac{2}{3.2}-\frac{2}{2.1}\)
\(=\frac{2}{100.99}-\left(\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\right)\)
đặt \(A=\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\)
\(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{98.99}\)
\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)
\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)
\(A=2.\left(1-\frac{1}{99}\right)\)
\(A=2.\frac{98}{99}\)
\(A=\frac{196}{99}\)
Thay A vào, ta được :
\(\frac{2}{100.99}-\frac{196}{99}=\frac{-19598}{9900}\)
C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1
C = 1/100 - (1/100.99 + 1/99.98 + 1/98.97 + ... + 1/3.2 + 1/2.1)
C = 1/100 - (1/1.2 + 1/2.3 + ... + 1/97.98 + 1/98.99 + 1/99.100)
C = 1/100 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100)
C = 1/100 - ( 1 - 1/100)
C = 1/100 - 99/100
C = -98/100 = -49/50
1/100-1/100.99-1/99.98-1/98.97-...-1/3.2-1/2.1
=-(-1/100+1/100.99+1/99.98+1/98.97+...+1/3.2+1/2.1)
=-(-1/100+1/100-1/99+1/99-1/98+1/98-1/97+...+1/3-1/2+1/2-1)
=-(-1)=1
C = 1/100 - 1/100 x 99 - 1/99 x 98 + 1/98 x 97 - ..- 1/3 x 2 - 1/2 x 1
C = 1/100 - ( 1/100 x 99 - 1/99 x 98 + 1/98 x 97 - ... - 1/3 x 2 - 1/2 x 1 )
C = 1/100 - ( 1/1 x 2 - 1/2 x 3 - .....- 1/97 x 98 - 1/98 x 99 - 1/99 x 100 )
C = 1/100 - ( 1 - 1/2 + 1/2 - 1/3 + .... + `1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100 )
C = 1/100 - ( 1 - 1/100 )
C = 1/100 - 99/100
C = 49/50
C=-(1/1.2+1/2.3+.....+1/99.100+1/100)=-(1/1-1/2+1/2-1/3+....+1/99-1/100+1/100)=-(1-1/100+1/100)=-1