Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)
\(a,\dfrac{11}{125}-\dfrac{17}{18}-\dfrac{5}{7}+\dfrac{4}{9}+\dfrac{17}{14}\)
\(=\dfrac{11}{125}+\left(\dfrac{4}{9}-\dfrac{17}{18}\right)+\left(\dfrac{17}{14}-\dfrac{5}{7}\right)\)
\(=\dfrac{11}{125}+\left(\dfrac{-1}{2}\right)+\dfrac{1}{2}\)
\(=\dfrac{11}{125}\)
\(b,-1\dfrac{5}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(-105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
\(=\dfrac{-12}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
\(=-15.\left[\dfrac{12}{7}+\dfrac{2}{7}+\left(-5\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\right]\)
\(=-15.\left[2+\left(-5\right).\dfrac{1}{105}\right]\)
\(=-15.\left(2-\dfrac{1}{21}\right)\)
\(=-15.\dfrac{41}{21}=\dfrac{-615}{21}\)
\(2,\)
\(a,\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{15}{28}-\dfrac{11}{13}\right)\)
\(\Leftrightarrow\dfrac{11}{13}-\dfrac{5}{42}+x=\dfrac{-15}{28}+\dfrac{11}{13}\)
\(\Leftrightarrow x=\dfrac{-15}{28}+\dfrac{11}{13}-\dfrac{11}{13}+\dfrac{5}{42}\)
\(\Leftrightarrow x=\left(\dfrac{11}{13}-\dfrac{11}{13}\right)+\left(\dfrac{5}{42}+\dfrac{-15}{28}\right)\)
\(\Leftrightarrow x=\dfrac{5}{12}\)
Vậy \(x=\dfrac{5}{12}\)
\(b,\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|-3,75=-2,15\)
\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2,15+3,75=1,6=\dfrac{16}{10}=\dfrac{8}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{4}{15}=\dfrac{8}{5}\\x+\dfrac{4}{15}=\dfrac{-8}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{5}-\dfrac{4}{15}=\dfrac{4}{3}\\x=\dfrac{-8}{5}-\dfrac{4}{15}=\dfrac{-28}{15}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{4}{3};\dfrac{-28}{15}\right\}\)
\(c,7^{x+2}+2.7^{x-1}=345\)
\(\Leftrightarrow7^{x-1}.\left(7^3+2\right)=345\)
\(\Leftrightarrow7^{x-1}.\left(343+2\right)=345\)
\(\Leftrightarrow7^{x-1}.345=345\)
\(\Leftrightarrow7^{x-1}=345:345=1\)
\(\Leftrightarrow x-1=0\)
\(x=0+1=1\)
Vậy \(x=1\)
B = .................
Xét thừa số 63.1,2 - 21.3,6 = 0 nên B = 0
\(C=\left|\dfrac{4}{9}-\left(\dfrac{\sqrt{2}}{2}\right)^2\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{6}{7}}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{2\left(\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}\right)}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{1}{2}\right|=\dfrac{1}{18}+\dfrac{9}{10}=\dfrac{43}{45}\)
Mình làm câu 1,2 trước, câu 3 sau
Câu 1:
\(\sqrt{x^2}=0\)
=> \(\left(\sqrt{x^2}\right)^2=0^2\)
\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Câu 2:
\(A=\left(0,75-0,6+\dfrac{3}{7}+\dfrac{3}{12}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+2,75-2,2\right)\)
\(A=\left(\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)\cdot11\left(\dfrac{1}{7}+\dfrac{1}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=33\cdot\dfrac{491}{1820}\cdot\dfrac{221}{420}=\dfrac{3580863}{764400}\)
a,
- Theo đề bài ta có:
(8x-1)2n-1 = 52n-1
=> 8x-1 = 5
8x = 6
x = \(\dfrac{6}{8}\)= \(\dfrac{3}{4}\)
- Vậy x = \(\dfrac{3}{4}\)
b,
- Ta có:
(x - 7)x+1 - (x - 7)x+11 = 0
(x - 7)x . (x - 7) - (x - 7)x . (x - 7)11 = 0
(x - 7)x . [(x - 7) - (x - 7)11] = 0
=> (x - 7)x = 0 hoặc [(x - 7) - (x - 7)11] = 0
- TH1: (x - 7)x = 0
=> x - 7 = 0
=> x = 7
- TH2:
[(x - 7) - (x - 7)11] = 0
=> x - 7 = (x -7)11
=> x - 7 = 1 hoặc x - 7 = 0
+ Nếu x - 7 = 1
x = 8
+ Nếu x - 7 = 0 (TH1)
- Vậy x = 7 hoặc x = 8
c, - Theo đề bài ta có:
\(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
- Thấy \(\left(\dfrac{2}{3}\right)^6=\left(\dfrac{2}{3}\right)^{2\cdot3}\)= \(\left(\dfrac{4}{9}\right)^3\)
=> \(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{4}{9}\right)^3\)
=> \(x-\dfrac{2}{9}=\dfrac{4}{9}\)
=> \(x=\dfrac{4}{9}-\dfrac{2}{9}\)
\(x=\dfrac{2}{9}\)
- Vậy \(x=\dfrac{2}{9}\)
a)\(\left(\dfrac{-3}{7}+\dfrac{5}{11}\right):\dfrac{-3}{5}+\left(\dfrac{-9}{7}+\dfrac{6}{11}\right):\dfrac{-3}{5}\)
=\(\dfrac{2}{77}\):\(\dfrac{-3}{5}+\left(\dfrac{-57}{77}\right):\dfrac{-3}{5}\)
=[\(\dfrac{2}{77}+\left(\dfrac{-57}{77}\right)\)]:\(\dfrac{-3}{5}\)
=\(\left(\dfrac{_{ }-5}{7}\right):\dfrac{-3}{5}\)
=\(\dfrac{25}{21}\)
b)\(\left(x-\dfrac{1}{4}\right)^3=27\)
⇔\(\left(x-\dfrac{1}{4^{ }}\right)^3=3^3\)
⇔\(x-\dfrac{1}{4}=3\)
⇔\(x=3+\dfrac{1}{4}\)
⇔\(x=\dfrac{13}{4}\)
Vậy \(x=\dfrac{13}{4}\)
*Trả lời :
a) \(-\dfrac{3}{4}.5\dfrac{3}{13}-0,75.\dfrac{36}{13}\)
= \(-\dfrac{3}{4}.\dfrac{68}{13}-\dfrac{3}{4}.\dfrac{36}{13}\)
=\(\dfrac{3}{4}.\dfrac{-68}{13}-\dfrac{3}{4}.\dfrac{36}{13}\)
=\(\dfrac{3}{4}.\cdot\left(\dfrac{-68}{13}-\dfrac{36}{13}\right)\)
=\(\dfrac{3}{4}.\left(-8\right)\)
= \(-6\)
b)\(4\dfrac{5}{9}:\left(-\dfrac{5}{7}\right)+\dfrac{49}{9}:\left(-\dfrac{5}{7}\right)\)
=\(\dfrac{41}{9}-\left(-\dfrac{5}{7}\right)+\dfrac{49}{9}:\left(-\dfrac{5}{7}\right)\)
=\(\left(\dfrac{41}{9}+\dfrac{49}{9}\right):\left(-\dfrac{5}{7}\right)\)
=\(\dfrac{90}{9}:\left(-\dfrac{5}{7}\right)\)
=\(10:\left(-\dfrac{5}{7}\right)\)
=\(-14\)
c)\(\left(-\dfrac{3}{5}+\dfrac{4}{9}\right):\dfrac{7}{11}+\left(-\dfrac{2}{5}+\dfrac{5}{9}\right):\dfrac{7}{11}\)
=\(\left(-\dfrac{3}{5}\right)+\dfrac{4}{9}:\dfrac{7}{11}+\left(-\dfrac{2}{5}\right)+\dfrac{5}{9}:\dfrac{7}{11}\)(áp dụng tính chất phá ngoặc )
=\(\left\{\left[-\dfrac{3}{5}+\left(-\dfrac{2}{5}\right)\right]+\left(\dfrac{4}{9}+\dfrac{5}{9}\right)\right\}:\dfrac{7}{11}\)
=\(\left(-\dfrac{5}{5}+\dfrac{9}{9}\right):\dfrac{7}{11}\)
=\(\left(-1+1\right):\dfrac{7}{11}\)
\(=0:\dfrac{7}{11}\)
=0.
d)\(\dfrac{6}{7}:\left(\dfrac{3}{26}-\dfrac{3}{13}\right)+\dfrac{6}{7}:\left(\dfrac{1}{10}-\dfrac{8}{5}\right)\)
=\(\dfrac{6}{7}:\left[\dfrac{3}{26}+\left(-\dfrac{6}{26}\right)\right]+\dfrac{6}{7}:\left[\dfrac{1}{10}+\left(-\dfrac{16}{10}\right)\right]\)
=\(\dfrac{6}{7}:\left(-\dfrac{3}{26}\right)+\dfrac{6}{7}:\left(-\dfrac{3}{2}\right)\)
=\(\dfrac{6}{7}:\left[\left(-\dfrac{3}{26}\right)+\left(-\dfrac{39}{26}\right)\right]\)
=\(\dfrac{6}{7}:\left(-\dfrac{21}{13}\right)\)
=\(-\dfrac{26}{49}\)
a. = \(\dfrac{-1}{24}-\left\{\dfrac{1}{4}-\dfrac{-3}{8}\right\}\)
= \(\dfrac{-1}{24}-\left\{\dfrac{1}{4}+\dfrac{3}{8}\right\}\)
= \(\dfrac{-1}{24}-\dfrac{5}{8}\)
= \(\dfrac{-2}{3}\)
b. = \(12\dfrac{7}{88}-3\dfrac{5}{11}\)
= \(8\dfrac{5}{8}\)
c. = \(\dfrac{-28}{9}+\dfrac{-413}{9}\)
= \(-49\)
d. = \(\dfrac{8}{35}:\dfrac{2}{11}+\dfrac{-8}{35}:\dfrac{2}{11}\)
= \(\dfrac{2}{11}:\left(\dfrac{8}{35}+\dfrac{-8}{35}\right)\)
= 0
Câu 1 (2,0 điểm). Thực hiện phép tính:
1) (-9)+15 2) 13,6 +8,9
Câu 2 (2,0 điểm). Tìm x, biết:
1) x + 8 = 5 2) |x|=2,3
3) x- 1/3 = -1/6 4) 2x +1/4 = -1
Câu 3 (2,0 điểm).
1) Tìm một sô biết 2/5 của nó bằng 36.
2) Một người gửi tiết kiệm 20 triệu đồng, sau một năm tiền lãi được trả là 1,2 triệu đồng. Hỏi người ấy đã gửi tiết kiệm với lãi suất bao nhiêu phần trăm một năm ?
Câu 4 (2,0 điểm). Vẽ hai góc kề bù xOy, yOx’, biết góc ∠xOy =
700 .
1) Tính số đo góc yOx’.
2) Vẽ tia phân giác Ot của góc xOy. Tính số đo góc x’Ot.
Câu 5 (2,0 điểm).
1) Tìm các phân số có mẫu số là 8 lớn hơn -3/4 và nhỏ hơn 1/4. Tính tổng các phân số tìm được.
2) Tìm các số nguyên x, y thỏa mãn: |x| +2|y| <2,99
Đáp án:
ĐÁP ÁN VÀ HƯỚNG DẪN, BIỂU ĐIỂM KTCL ĐẦU NĂM
NĂM HỌC 2015 – 2016
MÔN: TOÁN – LỚP 7
Câu | Đáp án | Điểm | |
Câu 1
(2 đ) |
1) (-9) +15 = 6 | 0,5 | |
2) 13,6 + 8,9 = 22,5 | 0,5 | ||
0,25 | |||
= 4/9 | 0,25 | ||
0,25 | |||
= -2/3 | 0,25 | ||
Câu 2
(2,0 đ) |
1) x + 8 = 5 ⇒ x = 5 – 8 | 0,25 | |
⇒ x = -3 | 0,25 | ||
2) |x| =2,3 ⇒ x = 2,3 hoặc x = – 2,3 (Thiếu một trường hợp trừ 0,25 đ) | 0,5 | ||
3) x- 1/3 = -1/6 ⇒ x = -1/6 + 1/3 | 0,25 | ||
⇒ x = 1/6 | 0,25 | ||
4) 2x +1/4 = -1 ⇒ 2x = -1 -1/4 | 0,25 | ||
⇒ 2x = -5/4 ⇒ x =-5/8 | 0,25 | ||
Câu 3
(2,0 đ) |
1) Vì 2/5 của nó bằng 36 nên số đó là: 36: 2/5 = 36 . 5/2 = 90 | 1,0 | |
2) Người ấy đã gửi tiết kiệm với lãi suất một năm bằng số phần trăm là:
1,2: 20.100% = 6% |
1,0 | ||
Câu 4
(2 đ) |
Vẽ hình phần 1) đúng | 0,25 | |
1) Do góc xOy và yOx’ là hai góc kề bù nên
xOy + yOx’ = 1800 |
0,25 | ||
⇒ yOx’ = 1800– xOy | 0,25 | ||
⇒ yOx’ = 1800– 700 ⇒ yOx’ = 1100 | 0,25 | ||
2) Do Ot là tia phân giác của xOy nên xOt = 1/2.xOy =350 | 0,25 | ||
Do xOt và x’Ot là hai góc kề bù nên xOt + x’Ot = 1800 | 0,25 | ||
⇒ x’Ot = 1800 – xOt | 0,25 | ||
= 1800 -350 = 1450 | 0,25 | ||
Câu 5
(2 đ) |
1) Gọi các phân số cần tìm có dạng x/8(x ∈ Z), ta có -3/4 < x/8 < -1/4 | 0,25 | |
⇒ -6/8 <x/8 <-2/8 ⇒ -6 <x <-2 | 0,25 | ||
⇒ x ∈ {-5; -4; -3} | 0,25 | ||
Tổng các phân số tìm được là: | 0,25 | ||
2) |x| +2|y| < 2,99 với x, y ∈ Z nên |x| +2|y| ∈ {0;1;2} | 0,25 | ||
|x| +2|y| = 0 ⇒ x = y = 0
|x| +2|y| = 1 ⇒ x = ± 1; y = 0 |
0,25 | ||
|x| +2|y| = 2 ⇒ x = ± 2; y =0 hoặc x =0 ; y = ±1 | 0,25 | ||
Vậy các cặp sốtìm được là (0;0);(1;0);(-1;0);(2;0);(-2;0);(0,1);(0;-1) | 0,25 |
Câu 1:
b: \(\Leftrightarrow\left|x-1\right|=-3x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{1}{3}\\\left(-3x+1-x+1\right)\left(-3x+1+x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{1}{3}\\\left(-4x+2\right)\cdot\left(-2x\right)=0\end{matrix}\right.\Leftrightarrow x=0\)
c: \(\Leftrightarrow\left[{}\begin{matrix}2x-1=2x+3\\2x+3=1-2x\end{matrix}\right.\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
e: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left[x\left(x^2-\dfrac{5}{4}\right)-x\right]\left[x\left(x^2-\dfrac{5}{4}\right)+x\right]=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x\left(x^2-\dfrac{9}{4}\right)\cdot x\cdot\left(x^2-\dfrac{1}{4}\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{0;\dfrac{1}{2};\dfrac{3}{2}\right\}\)
c: \(\Leftrightarrow x\cdot\left(\dfrac{5}{7}\right)^{11}=\left(\dfrac{5}{7}\right)^{12}\cdot7\)
\(\Leftrightarrow x=\left(\dfrac{5}{7}\right)^{12}:\left(\dfrac{5}{7}\right)^{11}\cdot7=\dfrac{5}{7}\cdot7=5\)
d: \(\Leftrightarrow9^x\cdot81+9^x-9^2\cdot82=0\)
\(\Leftrightarrow9^x\cdot82=9^2\cdot82\)
\(\Leftrightarrow9^x=9^2\)
hay x=2
c: ⇔x⋅(57)mũ11=(57)mũ12⋅7
⇔x=(5/7)mũ12:(57)mũ11⋅7=5/7⋅7=5
d: ⇔9x⋅81+9x−9mũ2⋅82=0
⇔9x⋅82=9mũ2⋅82
⇔9x=9mũ2
vậy x=2