Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2+4xy+2y^2-4x-4y+2=0\)
\(\Rightarrow4x^2+4xy+y^2-4x-2y+1+y^2-2y+1=0\)
\(\Rightarrow\left(2x+1\right)^2-2\left(2x+1\right)+1+\left(y-1\right)^2=0\)
\(\Rightarrow\left(2x+1-1\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow4x^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}4x^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}}\)
1.
\(\frac{25x^4y^3-15x^3y^5+20x^2y^4}{5x^2y^3}\)
\(=\frac{5x^2y^3\left(5x^2-3xy^2+4y\right)}{5x^2y^3}\)
\(=5x^2-3xy^2+4y\)
2.
a) \(27x^4-8x=x\left(27x^3-8\right)\)
\(=x\left(3x-2\right)\left(9x^2+6x+4\right)\)
b) \(16x^2y-4xy^2-4x^3+x^2y\)
\(=4xy\left(4x-y\right)-x^2\left(4x-y\right)\)
\(=x\left(4x-y\right)\left(4y-x\right)\)
c) \(x^2-2x-5+2\sqrt{5}\)
\(=\left(x-1\right)^2-6+2\sqrt{5}\)
\(=\left(x-1\right)^2-\left(6-2\sqrt{5}\right)=\left(x-1\right)^2-\left(\sqrt{5}-1\right)^2\)
\(=\left(x-\sqrt{5}\right)\left(x-2+\sqrt{5}\right)\)
Bài 1:
\(\left(25x^4y^3-15x^3y^5+20x^2y^4\right):\left(5x^2y^3\right)\)
\(=\frac{25x^4y^3-15x^3y^5+20x^2y^4}{5x^2y^3}\)
\(=\frac{5x^2y^3\left(5x^2-3xy^2+4y\right)}{5x^2y^3}\)
\(=5x^2-3xy^2+4y\)
Bài 2:
a) \(27x^4-8x\)
\(=x\left(3x-2\right)\left(3^2x^2+2.3x+2^2\right)\)
\(=x\left(3x-2\right)\left(9x^2+6x+4\right)\)
b) \(16x^2y-4xy^2-4x^3+x^2y\)
\(=4y^2+x^2-\left(4x^2\right)^2\)
\(=x\left(-4x^2+xy+4y^2\right)\)
=> x + 2y = 0 hoặc x2 - 2xy + 4y2 = 0
còn lại thì e bó tay . canh
(x+2y)(x2-2xy+4y2)=0
<=>x3+(2y)3=0
<=>x3+8y3=0 (1)
(x-2y)(x2+2xy+4y2)=0
<=>x3-(2y)3=0
<=>x3-8y3=0 (2)
từ (1) và (2)=>x3+8y3-x3+8y3=0
<=>16y3=0
<=>y=0
thay y=0 vào (1) ta đc:
x3-0=0
<=>x3=0
<=>x=0
Câu 1 :
\(E=4x^2+y^2-4x-2y+3\)
\(E=\left(2x\right)^2-2\cdot2x\cdot1+1^2+y^2-2\cdot y\cdot1+1^2+1\)
\(E=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)
Câu 2 :
\(G=x^2+2y^2+2xy-2y\)
\(G=x^2+2xy+y^2+y^2-2.y\cdot1+1^2-1\)
\(G=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)