Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^2}{x^2-1}-\frac{2x^2}{x^4-1}-\frac{1}{x^2+1}\)ĐK \(x\ne1\)
\(=\frac{x^2}{x^2-1}-\frac{2x^2}{\left(x^2-1\right)\left(x^2+1\right)}-\frac{1}{x^2+1}\)
\(=\frac{x^2\left(x^2+1\right)-2x^2-1\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{x^4+x^2-2x^2-x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{x^4-2x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{x^4-x^2-x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{x^2\left(x^2-1\right)-\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{\left(x^2-1\right)\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{x^2-1}{x^2+1}\)
Thay \(x=-\frac{2}{3}\)ta có
\(\frac{\left(\frac{-2}{3}\right)^2-1}{\left(-\frac{2}{3}\right)^2+1}=\frac{\frac{4}{9}-1}{\frac{4}{9}+1}=-\frac{5}{9}:\frac{13}{9}=-\frac{5}{13}\)
\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn
a, Xét : 196 = 14^2 = (a^2+b^2+c^2) = a^4+b^4+c^4+2.(a^2b^2+b^2c^2+c^2a^2)
<=> a^4+b^4+c^4 = 196 - 2.(a^2b^2+b^2c^2+c^2a^2)
Xét : 0 = (a+b+c)^2 = a^2+b^2+c^2+2.(ab+bc+ca)
Mà a^2+b^2+c^2 = 14
<=> 2.(ab+bc+ca) = -14
<=> ab+bc+ca = -7
<=> a^2b^2+b^2c^2+c^2a^2+2abc.(a+b+c) = 49
Lại có : a+b+c = 0
<=> a^2b^2+b^2c^2+c^2a^2 = 49
<=> A = a^4+b^4+c^4 = 196 - 2.49 = 98
Tk mk nha
b) \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\Leftrightarrow\)\(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)
\(\Leftrightarrow\)\(x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)
\(\Leftrightarrow\)\(x^2=y^2=z^2=0\)
\(\Leftrightarrow\)\(x=y=z=0\)
Vậy \(D=0\)
\(x^2-9x+1=0\Rightarrow x^2+1=9x\)
\(A=\frac{x^4+x^2+1}{5x^2}=\frac{x^4+2x^2+1-x^2}{5x^2}=\frac{\left(x^2+1\right)^2-x^2}{5x^2}=\frac{\left(x^2-x+1\right)\left(x^2+x+1\right)}{5x^2}\)
\(=\frac{\left(9x-x\right)\left(9x+x\right)}{5x^2}=\frac{80x^2}{5x^2}=16\left(x\ne0\right)\)
a)Ta có:a2=(x+1/x)2=x2+2+1/x2
=>A=x2+1/x2=a2-2
b)Ta có:a(a2-2)=(x+1/x)(x2+1/x2)=x3+1/x3+x+1/x
=>B=x3+1/x3=a(a2-2)-x-1/x=a(a2-2)-a=a(a2-3)
c)Ta có:(a2-2).a(a2-3)-a=(x2+1/x2)(x3+1/x3)-x-1/x=x5+1/x5+x+1/x-x-1/x=x5+1/x5=C
Ta có: \(\frac{x}{x^2+x+1}=\frac{-2}{3}\)
\(\Leftrightarrow\frac{x^2+x+1}{x}=-1,5\)
\(\Leftrightarrow x+1+\frac{1}{x}=-1,5\)
\(\Leftrightarrow x+\frac{1}{x}=-2,5\)
Ta lại có: \(A=\frac{x^2}{x^4+x^2+1}\)
\(\Leftrightarrow\frac{1}{A}=\frac{x^4+x^2+1}{x^2}=x^2+1+\frac{1}{x^2}\)
\(=\left(x+\frac{1}{x}\right)^2-1=\left(-2,5\right)^2-1=5,25\)