Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-9=\left(x-3\right)\left(x+3\right)\)
b) \(x^2+1-\dfrac{41}{25}=x^2-\dfrac{16}{25}=\left(x-\dfrac{4}{5}\right)\left(x+\dfrac{4}{5}\right)\)
Giả sử tồn tại n để 2n -1 =a2
\(\Rightarrow a\)lẻ. Khi đó: a2 - 1 = 2n - 2
\(\Leftrightarrow\left(a-1\right)\left(a+1\right)=2\left(2^{n-1}-1\right)\)
Vì a lẻ \(\Rightarrow a=2k+1\Rightarrow2k\left(2k+2\right)=2\left(2^{n-1}-1\right)\Rightarrow4k\left(k+1\right)=2\left(2^{n-1}-1\right)\)(vô lý)
Vậy với mọi n thì 2n-1 không là số chính phương
a) + \(VT=\sqrt{x^2+2x+10}+x^2+2x+1+7\)
\(=\sqrt{x^2+2x+1}+\left(x+1\right)^2+7>0\forall x\)
=> ptvn
d) ĐK : \(x^2+7x+7\ge0\)
Đặt \(t=\sqrt{x^2+7x+7}\ge0\) \(\Rightarrow t^2=x^2+7x+7\)
\(pt\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}-2=0\)
\(\Leftrightarrow3t^2+2t-5=0\Leftrightarrow\left(3t+5\right)\left(t-1\right)=0\)
\(\Leftrightarrow t=1\) ( do \(3t+5>0\forall t\ge0\) )
\(\Leftrightarrow x^2+7x+1=0\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) ( TM )
f) ĐK : \(x\ge1\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-1}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\) thì pt trở thành :
\(a+b-ab-1=0\)
\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)
\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-2\left(KTM\right)\end{matrix}\right.\)
Điều kiện: 4
\(x\ge\frac{1}{2}\)
Ta có:
\(x\left(\sqrt{2x-1}-3\right)=\frac{2\left(2x^2-7x-15\right)}{x^2-6x+13}\)
\(\Leftrightarrow x.\frac{2\left(x-5\right)}{\sqrt{2x-1}+3}=\frac{2\left(x-5\right)\left(2x+3\right)}{x^2-6x+13}\)
\(\Leftrightarrow2\left(x-5\right)\left(\frac{x}{\sqrt{2x-1}+3}-\frac{2x+3}{x^2-6x+13}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\\frac{x}{\sqrt{2x-1}+3}-\frac{2x+3}{x^2-6x+13}\left(1\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\frac{\left(x-3\right)+3}{\sqrt{2x-1}+3}-\frac{\left(2x-1\right)+4}{\left(x-3\right)^2+4}=0\)
Đặt \(\hept{\begin{cases}\left(x-3\right)=a\\\sqrt{2x-1}=b\ge0\end{cases}}\)
\(\Rightarrow\frac{a+3}{b+3}-\frac{b^2+4}{a^2+4}=0\)
Tới đây thì đơn giản rồi nhé
a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)
=>4x-4=2x-3
=>2x=1
hay x=1/2
b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)
=>(2x-3)=4x-4
=>4x-4=2x-3
=>2x=1
hay x=1/2(nhận)
c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=-3/2 hoặc x=7/2
e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>căn (x-5)=2
=>x-5=4
hay x=9
Câu 2:
Ta có: \(9-7x^2=30\)
\(\Leftrightarrow7x^2=9-30=-21\)(Vô lý)
câu 3 thì sao cậu