K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2016

a)12a<15a 

Ta có:12<15 để có bất đẳng thức

12a<15a  ta phải nhân cả 2 vế của bất đẳng thức 12<15 vs số a

Để đc bất đẳng thức cùng chiều thì a<0

b)4a<3a

Vì 4>3 và 4a<3a trái  chiều.Để nhân 2 vế của bất đẳng thức 4>3 vs a đc bất đẳng thức trái chiều thì a<0

c)-3a>-5a

Từ -3 > -5 để có -3a > -5a thì a phải là số dương

18 tháng 6 2016

a) a là dương

b) a là âm

c) a là dương

30 tháng 7 2019

Bạn xem lại đề nhé :

Phương trình \(b^3-3b^2+5b+11=0\)không có nghiệm dương nhé

\(VT=b\left(b-\frac{3}{2}\right)^2+\frac{11}{4}b+11>0\forall b>0\)

30 tháng 7 2019

Dạ đề đúng mà ???

10 tháng 2 2017

bao minh bai nay: n-1 chia het cho n+3

5 tháng 10 2016

a) - Do p là số nguyên tố nên p là số tự nhiên.

*) Xét p=3k+1 => \(p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9⋮3\) (hợp số)

*) Xét p=3k+2 => \(p^2+8=\left(3k+2\right)^2+8=9k^2+12k+12⋮3\) (hợp số)

*) Xét p=3k => k=1 do p là số nguyên tố => \(p^2+8=9+8=17\) (t/m)

Ta có: \(p^2+2=11\). Mà 11 là số nguyên tố => điều phải chứng minh.

b) (Làm tương tự bài trên)

 - Do p là số nguyên tố => p là số tự nhiên.

*) Xét p=3k+1 => \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=3k.8\left(3k+2\right)+\left(8+1\right)⋮3\)(hợp số)

*) Xét p=3k+2 => \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=3k.8\left(3k+4\right)+\left(32+1\right)⋮3\) (hợp số)

*) Xét p=3k => k=1 Do p là số nguyên tố => \(8p^2+1=8.9+1=73\)(t/m)

Ta có : \(2p+1=7\). Mà 7 là số nguyên tố => Điều phải chứng minh.

30 tháng 9 2016

làm ơn giải hộ mình nhanh lên

13 tháng 7 2015

cho tớ mỗi dấu cộng là 1 ví dụ nhé .tớ chưa hiểu lém 

12 tháng 7 2019

bạn có thể áp dụng cái cuối

Kết quả hình ảnh cho (a + b)2

12 tháng 7 2019

Ta có:

\(a^3+b^3+c^3=3abc\)

\(\Rightarrow\left(a^3+b^3\right)+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3+3abc=0\)

\(\Rightarrow[\left(a+b\right)^3+c^3]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)[\left(a+b\right)^2-\left(a+b\right)c+c^2]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc-3ab\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(1\right)\\a^2+b^2+c^2-ab-bc-ac=0\left(2\right)\end{cases}}\)

Từ (1) => a = b = c (vì a ; b ; c là các số dương)

Giải (2) ta có:

\(2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow2a^2+2b^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

Vì \(\left(a-b\right)^2\ge\forall a,b\)

\(\left(a-c\right)^2\ge\forall a,c\)

\(\left(b-c\right)^2\ge\forall b,c\)

\(\Rightarrow\)Ta có: \(a-b=a-c=b-c\Rightarrow a=b=c\)

22 tháng 4 2017

a) Ta có: 12 < 15. Để có bất đẳng thức

12a < 15a ta phải nhân cả hai vế của bất đẳng thức 12 < 15 với số a.

Để được bất đẳng thức cùng chiều thì a > 0

b) Vì 4 > 3 và 4a < 3a trái chiều. Để nhân hai vế của bất đẳng thức 4 > 3 với a được bất đẳng thức trái chiều thì a < 0

c) Từ -3 > -5 để có -3a > -5a thì a phải là số dương