Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\Rightarrow\frac{3}{x}=\frac{5}{6}-\frac{y}{3}=\frac{5}{6}-\frac{2y}{6}=\frac{5-2y}{6}\)
Do đó: x(5-2y)=18=2.32
=> Do x và y là các số nguyên nên 5-2y là ước của 18, mặt khác 5-2y là số lẻ.
Ước lẻ của 18 là : {1,-1,3,-3,9,-9}.
Ta có bảng:
5-2y | 1 | -1 | 3 | -3 | 9 | -9 |
2y | 4 | 6 | 2 | 8 | -4 | -14 |
y | 2 | 3 | 1 | 4 | -2 | 7 |
x | 18 | -18 | 6 | -6 | 2 | -2 |
b) Ta có: \(\frac{x}{6}-\frac{2}{y}=\frac{1}{30}\)
\(\Rightarrow5xy-60=y\)
\(y\left(5x-1\right)=60\)
Vì x,y là sô nguyên nên y là ước của 60
Mà Ư(60)={-60,-30,-20,-15,-12,-10,-6,-5,-4,-3,-2,-1,1,2,3,4,5,6,10,12,15,20,30,60}
Ta có bảng sau:
y | -60 | -30 | -20 | -15 | -12 | -10 | -6 | -5 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | 6 | 10 | 12 | 15 | 20 | 30 | 60 |
5x-1 | -1 | -2 | -3 | -4 | -5 | -6 | -10 | -12 | -15 | -20 | -30 | -60 | 60 | 30 | 20 | 15 | 12 | 10 | 6 | 5 | 4 | 3 | 2 | 1 |
x | 0 | L | L | L | L | -1 | L | L | L | L | L | L | L | L | L | L | L | L | L | L | 1 | L | L | L |
Dựa vào bảng trên ta tìm được các cặp nghiệm (x,y) là: (0,-60); (-1,-10); (1,15)
c) \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\Rightarrow\frac{4}{y}=\frac{x}{3}-\frac{1}{5}=\frac{5x-3}{15}\Rightarrow y\left(5x-3\right)=60\)
=> 5x-3 thuộc Ư(60)={-60,-30,-20,-15,-12,-10,-6,-5,-4,-3,-2,-1,1,2,3,4,5,6,10,12,15,20,30,60}
Ta có bảng sau:
5x-3 | -60 | -30 | -20 | -15 | -12 | -10 | -6 | -5 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | 6 | 10 | 12 | 15 | 20 | 30 | 60 |
x | L | L | L | L | L | L | L | L | L | 0 | L | L | L | 1 | L | L | L | L | L | 3 | L | L | L | L |
y | L | L | L | L | L | L | L | L | L | -20 | L | L | L | 30 | L | L | L | L | L | 5 | L | L | L | L |
Vậy...
a) \(\frac{9+xy}{3x}=\frac{5}{6}\) <=> 6(9+xy)=15x <=> 54+6xy=15x <=> 15x-6xy=54
<=> 3(5x-2xy) =54 <=> 5x-2xy=18 <=> x(5-2y) =18=\(\pm2.9=\pm1.18=\pm3.6\)
Vì 5-2y luôn là số lẻ nên 5-2y\(\in\left\{\pm1,\pm3,\pm9\right\}\)=> x\(\in\left\{\pm18,\pm6,\pm2\right\}\)
=> (x,y)=(18,2);(-18,3);(6,1);(-6,4);(2,-2);(-2,7)
b)\(\frac{xy-12}{6y}=\frac{1}{30}\)<=> 30(xy-12)=6y <=> 30xy-360=6y <=> 6y(5x-1)=360
<=> y(5x-1)=60
Làm tương tự câu a
c) \(\frac{xy-12}{3y}=\frac{1}{5}\)<=> 5xy-60=3y
<=> y(5x-3)=60
Làm tương tự
b) 52-\(|\)x\(|\)=-80
\(|\)x\(|\)=52-(-80)
\(|\)x\(|\)=52+80
\(|\)x\(|\)=132
Vậy x=-132
a) \(\frac{1}{2}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< 1\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)+...+\left(\frac{1}{91}+\frac{1}{92}+...+\frac{1}{100}\right)\)\(\frac{1}{60}\cdot10< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}\cdot10\)
\(\frac{1}{6}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{5}\)(1)
\(\frac{1}{70}\cdot10< \frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}< \frac{1}{60}\cdot10\)
\(\frac{1}{7}< \frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}< \frac{1}{6}\)(2)
.... (tương tự )
\(\frac{1}{100}\cdot10< \frac{1}{91}+\frac{1}{92}+...+\frac{1}{100}< \frac{1}{90}\cdot10\)
\(\frac{1}{10}< \frac{1}{91}+...+\frac{1}{100}< \frac{1}{9}\)
Từ (1)(2)(3)(4) và (5)
\(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\)
\(\frac{1}{2}< \frac{1624}{2520}< \frac{1}{51}+...+\frac{1}{100}\)
\(1>\frac{1879}{2520}>\frac{1}{51}+...+\frac{1}{100}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{4}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{99}{100}\)