K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

Câu hỏi của Thu Hà - Toán lớp 8 | Học trực tuyến

19 tháng 4 2017

a) Áp dụng BĐT Cauchy-Schwarz ta có:

(12+12+12)(x2+y2+z2)≥(x+y+z)2(12+12+12)(x2+y2+z2)≥(x+y+z)2

⇒3(x2+y2+z2)≥(x+y+z)2⇒3(x2+y2+z2)≥(x+y+z)2

⇒3(x2+y2+z2)≥(x+y+z)2=12=1⇒3(x2+y2+z2)≥(x+y+z)2=12=1

⇒x2+y2+z2≥13⇒x2+y2+z2≥13

Đẳng thức xảy ra khi x=y=z=13x=y=z=13

b) Áp dụng BĐT Cauchy-Schwarz ta có:

(4+1)(4x2+y2)≥(4x+y)2(4+1)(4x2+y2)≥(4x+y)2

⇒5(4x2+y2)≥(4x+y)2⇒5(4x2+y2)≥(4x+y)2

⇒5(4x2+y2)≥(4x+y)2=12=1⇒5(4x2+y2)≥(4x+y)2=12=1

⇒4x2+y2≥15⇒4x2+y2≥15

Đẳng thức xảy ra khi x=y=15x=y=15

7 tháng 6 2016

đề bắt lm cái j v

8 tháng 6 2016

phan h da thuc thanh nhan tu

7 tháng 3 2016

Ta có bất đẳng thức phụ sau

\(x^2+y^2+z^2\ge xy+yz+xz\)  với mọi  \(x,\)  \(y,\)  \(z\)

\(\Leftrightarrow\)  \(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Leftrightarrow\)  \(2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2\ge x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Leftrightarrow\)  \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow\)  \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)  \(\left(\text{*}\right)\)

Vì  \(x+y+z=1\)  (theo giả thiết) nên từ  \(\left(\text{*}\right)\)  \(\Rightarrow\)  \(x^2+y^2+z^2\ge\frac{1}{3}\)  (đpcm)

8 tháng 3 2016

troll nhau v

7 tháng 3 2016

Đáp án: Tay phải.

Đúng không

7 tháng 3 2016

cái j vậy ba

AH
Akai Haruma
Giáo viên
31 tháng 3 2018

Bài 3:

Áp dụng BĐT Cauchy cho các số dương ta có:

\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

Cộng theo vế các BĐT vừa thu được ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=2\)

Bài 4:

Áp dụng BĐT Cauchy cho 3 số dương:

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z\)

9 tháng 8 2016

1) Từ \(-2\le a,b,c\le3\) suy ra : 

\(\left(a+2\right)\left(a-3\right)\le0\Leftrightarrow a^2-a-6\le0\Leftrightarrow a^2\le a+6\)

\(\left(b+2\right)\left(b-3\right)\le0\Leftrightarrow b^2-b-6\le0\Leftrightarrow b^2\le b+6\)

\(\left(c+2\right)\left(c-3\right)\le0\Leftrightarrow c^2-c-6\le0\Leftrightarrow c^2\le c+6\)

Cộng các bđt trên theo vế ta có đpcm

2) \(P=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)=\frac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{xyz}\)

Từ giả thiết : \(x+1=\left(1-y\right)+\left(1-z\right)\ge2\sqrt{\left(1-y\right)\left(1-z\right)}=2\sqrt{\left(x+z\right)\left(x+y\right)}\)

Tương tự : \(y+1\ge2\sqrt{\left(y+x\right)\left(y+z\right)}\) , \(z+1\ge2\sqrt{\left(z+y\right)\left(z+x\right)}\)

\(\Rightarrow\frac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{xyz}\ge\frac{8\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{8.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{64xyz}{xyz}=64\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y+z=1\\x+y=y+z=z+x\end{cases}\Leftrightarrow}x=y=z=\frac{1}{3}\)

Vậy Min P = 64 tại x = y = z = 1/3