Câu hỏi : Trên kệ sách có 9 cuốn sách giáo khoa...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 3 2023

Xếp 2 cuốn sách lý cạnh nhau: \(2!=2\) cách

Xếp 3 cuốn hóa cạnh nhau: \(3!=6\) cách

Xếp 4 cuốn toán cạnh nhau: \(4!=24\) cách

Xếp bộ 3 toán-lý-hóa: \(3!=6\) cách

Theo quy tắc nhân, ta có số cách xếp thỏa mãn là: 

\(2.6.24.6=1728\) cách

3 tháng 3 2023

Xếp 2 cuốn sách lý cạnh nhau: 2!=22!=2 cách

Xếp 3 cuốn hóa cạnh nhau: 3!=63!=6 cách

Xếp 4 cuốn toán cạnh nhau: 4!=244!=24 cách

Xếp bộ 3 toán-lý-hóa: 3!=63!=6 cách

Theo quy tắc nhân, ta có số cách xếp thỏa mãn là: 

2.6.24.6=17282.6.24.6=1728 cách

23 tháng 12 2015

Do tam giác ABC đều nên tâm I cũng là trọng tâm tam giác. Suy ra IE=r, IC=2r và

\(CE=\sqrt{IC^2-IE^2}=r\sqrt{3}\Rightarrow AC=2CE=2r\sqrt{3}\)

Diện tích tam giác ABC là

\(S=\frac{1}{2}.3r.2r\sqrt{3}=3r^2\sqrt{3}=9\)
H�nh ?a gi�c TenDaGiac1: DaGiac[A, B, 3] H�nh ?a gi�c TenDaGiac1: DaGiac[A, B, 3] ???ng tr�n f: ???ng tr�n qua D v?i t�m I G�c ?: G�c gi?a A, C, D G�c ?: G�c gi?a A, C, D G�c ?: G�c gi?a A, C, D ?o?n th?ng a: ?o?n th?ng [A, B] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng b: ?o?n th?ng [B, C] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng c: ?o?n th?ng [C, A] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng d: ?o?n th?ng [C, D] ?o?n th?ng e: ?o?n th?ng [E, B] A = (-1.1, 0.5) A = (-1.1, 0.5) A = (-1.1, 0.5) B = (2.66, 0.5) B = (2.66, 0.5) B = (2.66, 0.5) ?i?m C: DaGiac[A, B, 3] ?i?m C: DaGiac[A, B, 3] ?i?m C: DaGiac[A, B, 3] ?i?m D: Trung ?i?m c?a A, B ?i?m D: Trung ?i?m c?a A, B ?i?m D: Trung ?i?m c?a A, B ?i?m E: Trung ?i?m c?a C, A ?i?m E: Trung ?i?m c?a C, A ?i?m E: Trung ?i?m c?a C, A ?i?m I: Giao ?i?m c?a d, e ?i?m I: Giao ?i?m c?a d, e ?i?m I: Giao ?i?m c?a d, e

23 tháng 12 2015

 

u

21 tháng 1 2022

Cho tam giác MNP có S = 84; a =13; b = 14; c = 15. Độ dài bán kính đường tròn ngoại tiếp của tam giác trên là?

A. 8,125   

B. 130

C. 8

D. 8,5

C nha bn

21 tháng 1 2022

ý C nha bạn

HT

17 tháng 5 2021

ddjmjsdhjdjkscdskkdldr

17 tháng 5 2021

thay y=1 vào phương trình

2x+3*1=7

=>x=2

16 tháng 11 2021

Ta có: a + a = 2a

Độ dài của vecto a + a bằng 2 lần độ dài của vecto a

Hướng của vecto a + a cùng hướng với vecto a

4 tháng 1 2016

Theo bất đẳng thức Bunhiacopxki thì

\(\left(ab(2c+a)+bc(2a+b)+ca(2b+c)\right)\left(\dfrac{a^4}{ab(2c+a)}+\dfrac{b^4}{bc(2a+b)}+\dfrac{c^4}{ca(2b+c)}\right)\geq (a^2+b^2+c^2)^2\)

Do đó \(VT\geq \dfrac{(a^2+b^2+c^2)^2}{a^2b+b^2c+c^2a+6abc}\)

Ta có \(3=a+b+c\geq 3\sqrt[3]{abc}, 3(a^2+b^2+c^2)\geq (a+b+c)^2\)

và \(2a^2b\leq a^2b^2+a^2,...\Rightarrow 2(a^2b+b^2c+c^2a)\leq a^2b^2+b^2c^2+c^2a^2+(a^2+b^2+c^2)\)

Mà \(3(a^2b^2+b^2c^2+c^2a^2)\leq (a^2+b^2+c^2)^2\) và \(3(a^2+b^2+c^2)\leq (a^2+b^2+c^2)^2\)

nên ta suy ra đpcm

19 tháng 10 2021

\(y=\sqrt{x-m}+\sqrt{2x-m-1}\)

ĐKXĐ: \(\hept{\begin{cases}x-m\ge0\\2x-m-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge m\\x\ge\frac{m+1}{2}\end{cases}}\)

Hàm số xác định trên \(\left(0;+\infty\right)\) có:

\(\Leftrightarrow\hept{\begin{cases}m\le0\\\frac{m+1}{2}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\le0\\m\le-1\end{cases}}\)

\(\Rightarrow m\le-1\)