Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
â. (A+B)2 = A2+2AB+B2
b. A2 – B2= (A-B)(A+B)
c. (A – B)2= A2 – 2AB+ B2
d. A3 + B3= (A+B)(A2- AB +B2)
e. cái này bạn phải chú ý cách sắp xếp mà sx nó lại \(x^6-2x^3y+y^2\) (A – B)2= A2 – 2AB+ B2
f. (A+B)3= A3+3A2B +3AB2+B3
a) x2+6xy+9y2 = x2+2.x.3y+(3y)2 = (x+3y)2
b) x2-\(\dfrac{1}{4}\)= x2- (\(\dfrac{1}{2}\))2 = (x-\(\dfrac{1}{2}\))(x+\(\dfrac{1}{2}\))
c) x2 -10x+25 = x2 -2.x.5+52 = (x-5)2
d) 8x3+27y3 = (2x)3+(3y)3 = (2x+3y)[(2x)2 -2x.3y+(3y)2]
e) x6 +y2 -2x3y = x6-2x3y +y2 = (x3)2 -2x3y +y2 = (x3 -y)2
f) x3 +9x2y +27xy2 +27y3 = x3 +3.x2.3y +3.x.(3y)2 +(3y)3 = (x+3y)3
\(\left(x+y\right)^3-x^3y^3=\left(x+y\right)^3-\left(xy\right)^3\)
=\(\left(x+y+xy\right)\left[\left(x+y\right)^2-xy\left(x+y\right)+x^2+y^2\right]\)
\(x^2-6x+8=x^2-6x+9-1\\ =\left(x-3\right)^2-1\\ =\left(x-3+1\right)\left(x-3-1\right)=\left(x-2\right)\left(x-4\right)\)
b)
\(4x^2-7x+3=4x^2-4x-3x+3\\ =4x\left(x-1\right)-3\left(x-1\right)\\ =\left(x-1\right)\left(4x-3\right)\)
c)
\(\left(3x-1\right)^2-\left(2x-3\right)^2=\left(3x-1+2x-3\right)\left(3x-1-2x+3\right)\\ =\left(5x-4\right)\left(x+2\right)\)
Bài 1:
a) Ta có: \(4x^2-6x\)
\(=2x\cdot2x-2x\cdot3\)
\(=2x\left(2x-3\right)\)
b) Ta có: \(9x^4y^3+3x^2y^4\)
\(=3x^2y^3\cdot3x^2+3x^2y^3\cdot y\)
\(=3x^2y^3\left(3x^2+y\right)\)
c) Ta có: \(x^3-2x^2+5x\)
\(=x\cdot x^2-x\cdot2x+5\cdot x\)
\(=x\left(x^2-2x+5\right)\)
d) Ta có: \(3x\left(x-1\right)+5\left(x-1\right)\)
\(=3x\cdot\left(x-1\right)+5\cdot\left(x-1\right)\)
\(=\left(x-1\right)\left(3x+5\right)\)
e) Ta có: \(2x^2\left(x+1\right)+4\left(x+1\right)\)
\(=2\cdot\left(x+1\right)\cdot x^2+2\cdot\left(x+1\right)\cdot2\)
\(=2\left(x+1\right)\cdot\left(x^2+2\right)\)
f) Ta có: \(-3x+6xy+9xz\)
\(=9xz+6xy-3x\)
\(=3x\cdot3z+3x\cdot2y-3x\cdot1\)
\(=3x\left(3z+2y-1\right)\)
Bài 2:
a)Xét hình thang ABCD(AB//CD) có
E là trung điểm của AD(gt)
F là trung điểm của BC(gt)
Do đó: EF là đường trung bình của hình thang ABCD(Định nghĩa đường trung bình của hình thang)
⇒EF//AB//CD và \(EF=\frac{AB+CD}{2}\)(Định lí 4 về đường trung bình của hình thang)
Xét ΔADC có
E là trung điểm của AD(gt)
EK//DC(EF//DC, K∈EF)
Do đó: K là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
⇒AK=KC(đpcm)
b) Xét ΔADC có
E là trung điểm của AD(gt)
K là trung điểm của AC(cmt)
Do đó: EK là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)
⇒\(EK=\frac{DC}{2}\)(Định lí 2 về đường trung bình của tam giác)
⇒\(EK=\frac{10}{2}=5cm\)
Ta có: \(EF=\frac{AB+DC}{2}\)(cmt)
nên \(EF=\frac{4+10}{2}=7cm\)
Ta có: K nằm giữa E và F(E,K,F thẳng hàng)
nên EK+KF=EF
⇒KF=EF-EK=7-5=2cm
Vậy: EK=5cm; KF=2cm
\(1.x^4+6x^3+11x^2+6x+1\)
\(=x^4+6x^3+9x^2+2x^2+6x+1\)
\(=x^4+9x^2+1+6x^3+2x^2+6x\)
\(=\left(x^2\right)^2+\left(3x\right)^2+1^2+2.x^2.3x+2.x^2.1+2.3x.1\)
\(=\left(x^2+3x+1\right)^2\)
\(2,6x^4+5x^3-38x^2+5x+6\)
\(=6x^4+6x^3+2x^3-3x^3-36x^2+2x^2-3x^2-x^2-12x+18x-x+6\)
\(=\left(6x^4+2x^3\right)+\left(6x^3+2x^2\right)-\left(3x^3+x^2\right)-\left(36x^2+12x\right)+\left(18x+6\right)-\left(3x^2+x\right)\)
\(=2x^3\left(3x+1\right)+2x^2\left(3x+1\right)-x^2\left(3x+1\right)-12x\left(3x+1\right)+6\left(3x+1\right)-x\left(3x+1\right)\)
\(=\left(3x+1\right)\left(2x^3+2x^2-x^2-12x+6-x\right)\)
\(=\left(3x+1\right)\left[\left(2x^3-x^2\right)+\left(2x^2-x\right)-\left(12x-6\right)\right]\)
\(=\left(3x+1\right)\left[x^2\left(2x-1\right)+x\left(2x-1\right)-6\left(2x-1\right)\right]\)
\(=\left(3x+1\right)\left(2x-1\right)\left(x^2+x-6\right)\)
\(=\left(3x+1\right)\left(2x-1\right)\left(x^2+3x-2x-6\right)\)
\(=\left(3x+1\right)\left(2x-1\right)\left[\left(x^2+3x\right)-\left(2x+6\right)\right]\)
\(=\left(3x+1\right)\left(2x-1\right)\left[x\left(x+3\right)-2\left(x+3\right)\right]\)
\(=\left(3x+1\right)\left(2x-1\right)\left(x+3\right)\left(x-2\right)\)
1. \(x^4+6x^3+11x^2+6x+1\)
\(=\left(x^2\right)^2+2.x^2.3x+\left(3x\right)^2+2x^2+6x+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
3. \(x^4-7x^3+14x^2-7x+1\)
\(=x^2\left(x^2-7x+14-\dfrac{7}{x}+\dfrac{1}{x^2}\right)\)
\(=x^2\left[\left(x^2+\dfrac{1}{x^2}\right)-\left(7x+\dfrac{7}{x}\right)+14\right]\)
\(=x^2\left[\left(x+\dfrac{1}{x}\right)^2-7\left(x+\dfrac{1}{x}\right)+12\right]\)
\(=x^2\left[\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right).\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{1}{4}\right]\)
\(=x^2\left[\left(x+\dfrac{1}{x}-\dfrac{7}{2}\right)^2-\dfrac{1}{4}\right]\)
\(=\left(x^2+1-\dfrac{7}{2}x\right)^2-\left(\dfrac{1}{2}x\right)^2\)
\(=\left(x^2-3x+1\right)\left(x^2-4x+1\right)\)
Có thể phân tích thành HĐT tiếp hoặc không.
3b. Để A=\(\frac{4x^3-6x^2+8x}{2x-1}\) \(\in\)Z => 2x2-2x+3+\(\frac{3}{2x-1}\)\(\in\)Z =>\(\frac{3}{2x-1}\) \(\in\)Z
=> 2x-1 \(\in\)Ư(3)={\(\pm\)1,\(\pm\)3}
=> \(\left[{}\begin{matrix}2x-1=1\\2x-1=-1\\2x-1=3\\2x-1=-3\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=1\\x=0\\x=2\\x=-1\end{matrix}\right.\)(tm)
a) Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ac}{abc}=0\)
\(\Rightarrow\frac{ab+bc+ac}{abc}=0\)
\(\Rightarrow ab+bc+ac=0\)
Ta lại có:
\(a+b+c=1\)
\(\Rightarrow\left(a+b+c\right)^2=1\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=1\)
=> Đpcm
a/ \(\left|\frac{3x-6}{1-2x}\right|=x-2\) \(\left(x\ne\frac{1}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{3x-6}{1-2x}=x-2\\\frac{3x-6}{1-2x}=2-x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}3x-6=\left(x-2\right)\left(1-2x\right)\\3x-6=\left(2-x\right)\left(1-2x\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}3x-6=x+4x-2-2x^2\\3x-6=-x-4x+2+2x^2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-2x^2+2x+4=0\\2x^2-8x+8=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\\x=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
KL: .............
b/ Tương tự
Bài 3:
a) ta có: \(A=x^2+4x+9\)
\(=x^2+4x+4+5=\left(x+2\right)^2+5\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi
\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy: GTNN của đa thức \(A=x^2+4x+9\) là 5 khi x=-2
b) Ta có: \(B=2x^2-20x+53\)
\(=2\left(x^2-10x+\frac{53}{2}\right)\)
\(=2\left(x^2-10x+25+\frac{3}{2}\right)\)
\(=2\left[\left(x-5\right)^2+\frac{3}{2}\right]\)
\(=2\left(x-5\right)^2+2\cdot\frac{3}{2}\)
\(=2\left(x-5\right)^2+3\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi
\(2\left(x-5\right)^2=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy: GTNN của đa thức \(B=2x^2-20x+53\) là 3 khi x=5
c) Ta có : \(M=1+6x-x^2\)
\(=-x^2+6x+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
\(=-\left(x-3\right)^2+10\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2+10\le10\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTLN của đa thức \(M=1+6x-x^2\) là 10 khi x=3
Bài 2:
a) \(\left(x+y\right)^2+\left(x^2-y^2\right)\)
\(=\left(x+y\right)^2+\left(x-y\right).\left(x+y\right)\)
\(=\left(x+y\right).\left(x+y+x-y\right)\)
\(=\left(x+y\right).2x\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left[x-y-\left(z-t\right)\right].\left(x-y+z-t\right)\)
\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)
Chúc bạn học tốt!
a) \(6x^2+15x+6\)
\(=\left(6x^2+12x\right)+\left(3x+6\right)\)
\(=6x\left(x+2\right)+3\left(x+2\right)\)
\(=3\left(x+2\right)\left(2x+1\right)\)
b) \(6x^2-13x+6\)
\(=6x^2-9x-4x+6\)
\(=3x\left(2x-3\right)-2\left(2x-3\right)\)
\(=\left(2x-3\right)\left(3x-2\right)\)
c) \(8x^2+2x-3\)
\(=8x^2-4x+6x-3\)
\(=4x\left(2x-1\right)+3\left(2x-1\right)\)
\(=\left(2x-1\right)\left(4x+3\right)\)
a) \(6x^2+15x+6=6x^2+3x+12x+6=3x\left(2x+1\right)+6.\left(2x+1\right)=\left(3x+6\right).\left(2x+1\right)\)
b) \(6x^2-13x+6=6x^2-x-12x+6=x.\left(6x-1\right)-2.\left(6x-3\right)\)