Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(x^2+y^2+z^2=x\left(y+z\right)\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+y^2+z^2=0\Leftrightarrow\left(x-y\right)^2+y^2+z^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\y^2=0\\z^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
Vậy nghiệm của phương trình : (x;y;z) = (0;0;0)
2. Bạn xem lại đề !
ta co 9(x^2-2x+1) +( y^2 -6y +9) + 2(z^2 + 2z +1) = 0
suy ra 9(x-1)^2 + (y - 3 )^2 + 3( z-1)^2 = 0
suy ra x-1=0 ; y-3 =0 ; z-1=0
suy ra x=1;y=3; z=1
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)
\(\Leftrightarrow\left(3x-3\right)^2+\left(y-2\right)^2+\left(\sqrt{2}z+\sqrt{2}\right)^2=0\)
Vì: \(\left(3x-3\right)^2+\left(y-2\right)^2+\left(\sqrt{2}z+\sqrt{2}\right)^2\ge0\forall x,y,z\)
=> Dấu = xảy ra khi: \(\left\{{}\begin{matrix}3x-3=0\\y-2=0\\\sqrt{2}z+\sqrt{2}=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=-1\end{matrix}\right.\)
Vậy.................
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)
\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y-3\right)^2+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=1\\y=3\\z=-1\end{cases}\)
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow\left[\left(3x\right)^2-18x+9\right]+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)
\(\Leftrightarrow\left(3x-3\right)^2+\left(y^2-3\right)^2+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-3\right)^2=0\\\left(y-3\right)^2=0\\\left(z+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
Vậy ..........
(9x2-18x+9)+(y2-6y+9)+2(z2+2z+1)=0\(\Rightarrow\)(3x-3)2+(y-3)2+2(z+1)2=0\(\Rightarrow\hept{\begin{cases}\left(3x-3\right)^2=0\\\left(y-3\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z+1\right)^2\ge0\end{cases}\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0}\)
Do đó dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\\left(z+1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
Vậy nghiệm của phương trình là : \(\left(x;y;z\right)=\left(1;3;-1\right)\)