Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{8.9.10}\right).x=\dfrac{23}{45}\)
\(\left[\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\right)\right].x=\dfrac{23}{45}\)\(\left[\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{9.10}\right)\right].x=\dfrac{23}{45}\)
\(\left(\dfrac{1}{2}.\dfrac{22}{45}\right).x=\dfrac{23}{45}\)
\(\dfrac{11}{45}.x=\dfrac{23}{45}\)
\(x=\dfrac{23}{45}:\dfrac{11}{45}\)
\(x=\dfrac{23}{11}\)
Ta có:
\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{8.9.10}\right)x=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{8.9.10}\right)x\) \(=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\right)x\) \(=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{9.10}\right)x=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{11}{45}.x=\dfrac{23}{45}\Leftrightarrow x=\dfrac{23}{45}\div\dfrac{11}{45}=\dfrac{23}{11}\)
Vậy \(x=\dfrac{23}{11}\)
a) \(\left(2x-3\right)\left(6-2x\right)=0\)
\(\circledast\)TH1: \(2x-3=0\\ 2x=0+3\\ 2x=3\\ x=\dfrac{3}{2}\)
\(\circledast\)TH2: \(6-2x=0\\ 2x=6-0\\ 2x=6\\ x=\dfrac{6}{2}=3\)
Vậy \(x\in\left\{\dfrac{3}{2};3\right\}\).
b) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)
\(\dfrac{1}{3}x=0-\dfrac{2}{5}\left(x-1\right)\)
\(\dfrac{1}{3}x=-\dfrac{2}{5}\left(x-1\right)\)
\(-\dfrac{2}{5}-\dfrac{1}{3}=-x\left(x-1\right)\)
\(-\dfrac{11}{15}=-x\left(x-1\right)\)
\(\Rightarrow x=1.491631652\)
Vậy \(x=1.491631652\)
c) \(\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)
\(\circledast\)TH1: \(3x-1=0\\ 3x=0+1\\ 3x=1\\ x=\dfrac{1}{3}\)
\(\circledast\)TH2: \(-\dfrac{1}{2}x+5=0\\ -\dfrac{1}{2}x=0-5\\ -\dfrac{1}{2}x=-5\\ x=-5:-\dfrac{1}{2}\\ x=10\)
Vậy \(x\in\left\{\dfrac{1}{3};10\right\}\).
d) \(\dfrac{x}{5}=\dfrac{2}{3}\\ x=\dfrac{5\cdot2}{3}\\ x=\dfrac{10}{3}\)
Vậy \(x=\dfrac{10}{3}\).
e) \(\dfrac{x}{3}-\dfrac{1}{2}=\dfrac{1}{5}\\ \)
\(\dfrac{x}{3}=\dfrac{1}{5}+\dfrac{1}{2}\)
\(\dfrac{x}{3}=\dfrac{7}{10}\)
\(x=\dfrac{3\cdot7}{10}\)
\(x=\dfrac{21}{10}\)
Vậy \(x=\dfrac{21}{10}\).
f) \(\dfrac{x}{5}-\dfrac{1}{2}=\dfrac{6}{10}\)
\(\dfrac{x}{5}=\dfrac{6}{10}+\dfrac{1}{2}\)
\(\dfrac{x}{5}=\dfrac{11}{10}\)
\(x=\dfrac{5\cdot11}{10}\)
\(x=\dfrac{55}{10}=\dfrac{11}{2}\)
Vậy \(x=\dfrac{11}{2}\).
g) \(\dfrac{x+3}{15}=\dfrac{1}{3}\\ x+3=\dfrac{15}{3}=5\\ x=5-3\\ x=2\)
Vậy \(x=2\).
h) \(\dfrac{x-12}{4}=\dfrac{1}{2}\\ x-12=\dfrac{4}{2}=2\\ x=2+12\\ x=14\)
Vậy \(x=14\).
\(\dfrac{1}{7}=\dfrac{8}{-x}\)=> \(-x=56\)
=> \(x=56\)
2) => 18x = 18
=> x = 1
3) \(\dfrac{-4}{3}+x=\dfrac{-11}{6}\)
=> \(x=\dfrac{-11}{6}+\dfrac{4}{3}\)
=> \(x=\dfrac{-1}{2}\)
4) 45%.x =\(\dfrac{3}{5}\)
=> \(x=\dfrac{3}{5}:\dfrac{9}{20}\)
=> \(x=\dfrac{4}{3}\)
a) \(\dfrac{2}{3}x-\dfrac{3}{2}x=\dfrac{5}{12}\)
\(-\dfrac{5}{6}x=\dfrac{5}{12}\)
\(x=-\dfrac{1}{2}\)
b) \(\dfrac{2}{5}+\dfrac{3}{5}\cdot\left(3x-3.7\right)=-\dfrac{53}{10}\)
\(\dfrac{3}{5}\left(3x-3.7\right)=-\dfrac{57}{10}\)
\(3x-3.7=-\dfrac{19}{2}\)
\(3x=-5.8\)
\(x=-\dfrac{29}{15}\)
c) \(\dfrac{7}{9}:\left(2+\dfrac{3}{4}x\right)+\dfrac{5}{9}=\dfrac{23}{27}\)
\(\dfrac{7}{9}:\left(2+\dfrac{3}{4}x\right)=\dfrac{8}{27}\)
\(2+\dfrac{3}{4}x=\dfrac{21}{8}\)
\(\dfrac{3}{4}x=\dfrac{5}{8}\)
\(x=\dfrac{5}{6}\)
d) \(-\dfrac{2}{3}x+\dfrac{1}{5}=\dfrac{3}{10}\)
\(-\dfrac{2}{3}x=\dfrac{1}{10}\)
\(x=-\dfrac{3}{20}\)
1/
a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)
b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993
2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993
2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993
2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993
2.(1 − 1/x+1) = 3984/1993
1 − 1/x + 1= 3984/1993 :2
1 − 1/x+1 = 1992/1993
1/x+1 = 1 − 1992/1993
1/x+1=1/1993
<=>x+1 = 1993
<=>x+1=1993
<=> x+1=1993
<=> x = 1993-1
<=> x = 1992
K chép lại đề, lm luôn nhé:
*\(\Rightarrow\) \(\left(\dfrac{7}{2}+2x\right)\cdot\dfrac{8}{3}=\dfrac{16}{3}\)
\(\Rightarrow\dfrac{7}{2}+2x=\dfrac{16}{3}:\dfrac{8}{3}=2\)
\(\Rightarrow2x=2-\dfrac{7}{2}=-\dfrac{3}{2}\)
\(\Rightarrow x=-\dfrac{3}{4}\)
* \(\Rightarrow\left|2x-\dfrac{2}{3}\right|=\dfrac{\dfrac{3}{4}-2}{2}=-\dfrac{5}{8}\)
=> K có gt x nào t/m đề
* Đề sai
* \(\Rightarrow\left[{}\begin{matrix}3x-1=0\\-\dfrac{1}{2}x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=10\end{matrix}\right.\)
*\(\Rightarrow\dfrac{1}{3}:\left(2x-1\right)=-5-\dfrac{1}{4}=-\dfrac{21}{4}\)
\(\Rightarrow2x-1=\dfrac{1}{3}:\left(-\dfrac{21}{4}\right)=-\dfrac{4}{63}\)
\(\Rightarrow2x=-\dfrac{4}{63}+1=\dfrac{59}{63}\)
\(\Rightarrow x=\dfrac{59}{63}:2=\dfrac{59}{126}\)
* \(\Rightarrow\left(2x+\dfrac{3}{5}\right)^2=\dfrac{9}{25}\)
\(\Rightarrow\left[{}\begin{matrix}2x+\dfrac{3}{5}=\dfrac{3}{5}\\2x+\dfrac{3}{5}=-\dfrac{3}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=0\Rightarrow x=0\\2x=-\dfrac{6}{5}\Rightarrow x=-\dfrac{3}{5}\end{matrix}\right.\)
* \(\Rightarrow-5x-1-\dfrac{1}{2}x+\dfrac{1}{3}=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(\Rightarrow-5x-\dfrac{1}{2}x-\dfrac{3}{2}x=-\dfrac{5}{6}+1-\dfrac{1}{3}\)
\(\Rightarrow-7x=-\dfrac{1}{6}\)
\(\Rightarrow x=-\dfrac{1}{6}:7=-\dfrac{1}{42}\)
a)\(\left(3\dfrac{1}{2}+2x\right).2\dfrac{2}{3}=5\dfrac{1}{3}\)
\(\left(\dfrac{7}{2}+2x\right).\dfrac{8}{3}=\dfrac{16}{3}\)
\(\dfrac{7}{2}+2x=\dfrac{16}{3}:\dfrac{8}{3}=2\)
\(2x=2-\dfrac{7}{2}=\dfrac{-3}{2}\Rightarrow x=\dfrac{-3}{4}\)
b)\(\dfrac{3}{4}-2.\left|2x-\dfrac{2}{3}\right|=2\)
\(2.\left|2x-\dfrac{2}{3}\right|=\dfrac{3}{4}-2=\dfrac{-1}{4}\)
\(\Rightarrow\left|2x-3\right|=\dfrac{-1}{8}\)
\(\Rightarrow x\in\varnothing\)
c) Đề sai,bạn có viết chữ x đâu,đó là phép tính mà.
d)\(\left(3x-1\right)\left(\dfrac{-1}{2}x+5\right)=0\)
\(\Leftrightarrow3x-1=0\Rightarrow x=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{-1}{2}x+5=0\Rightarrow x=10\)
e)\(\dfrac{1}{4}+\dfrac{1}{3}:\left(2x-1\right)=-5\)
\(\dfrac{1}{3}:\left(2x-1\right)=-5-\dfrac{1}{4}=\dfrac{-21}{4}\)
\(2x-1=\dfrac{1}{3}:\dfrac{-21}{4}=\dfrac{-4}{63}\)
\(\Rightarrow2x=\dfrac{59}{63}\Rightarrow x=\dfrac{59}{126}\)
g)\(\left(2x+\dfrac{3}{5}\right)^2-\dfrac{9}{25}=0\)
\(\left(2x+\dfrac{3}{5}\right)^2=0+\dfrac{9}{25}=\dfrac{9}{25}\)
\(\dfrac{9}{25}=\left(\dfrac{3}{5}\right)^2=\left(\dfrac{-3}{5}\right)^2\)
\(th1:x=0\)
\(th2:x=\dfrac{-3}{5}\)
h)\(-5\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(-5x+-1-\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(\Leftrightarrow-5x+-1+\dfrac{5}{6}-\dfrac{1}{3}=2x\)
\(-5x+\dfrac{-1}{2}=2x\)
\(\dfrac{-1}{2}=2x+5x\)
\(\dfrac{-1}{2}=7x\Rightarrow x=\dfrac{-1}{14}\)
1.
\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...........+\dfrac{1}{8.9.10}\right)x=\dfrac{23}{45}\)
\(\Leftrightarrow\left[\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{3.4.5}+............+\dfrac{2}{8.9.10}\right)\right]x=\dfrac{23}{45}\)
\(\Leftrightarrow\left[\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+........+\dfrac{1}{8.9}-\dfrac{1}{9.10}\right)\right]x=\dfrac{23}{45}\)
\(\Leftrightarrow\left[\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{8.9}\right)\right]x=\dfrac{23}{45}\)
\(\Leftrightarrow\left[\dfrac{1}{2}.\dfrac{22}{45}\right]x=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{11}{45}.x=\dfrac{23}{45}\)
\(\Leftrightarrow x=\dfrac{23}{11}\)
Vậy \(x=\dfrac{23}{11}\) là giá trị cần tìm
2.
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+.........+\dfrac{1}{x\left(x+1\right):2}=\dfrac{1998}{2000}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...............+\dfrac{2}{x\left(x+1\right)}=\dfrac{1998}{2000}\)
\(\Leftrightarrow\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...........+\dfrac{2}{x\left(x+1\right)}=\dfrac{1998}{2000}\)
\(\Leftrightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.........+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{1998}{2000}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.........+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{1998}{2000}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{1998}{2000}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{999}{2000}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2000}\)
\(\Leftrightarrow x+1=2000\)
\(\Leftrightarrow x=1999\)
Vậy \(x=1999\) là giá trị cần tìm