![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
b) \(27x^3-54x^2+36x=8\)
\(\Rightarrow27x^3-54x^2+36x-8=0\)
\(\Rightarrow\left(3x\right)^3-3.\left(3x\right)^2.2+3.3x.2^2-2^3=0\)
\(\Rightarrow\left(3x-2\right)^3=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow3x=2\)
\(\Rightarrow x=\dfrac{2}{3}\)
(2x-5)^2-(5+2x)^2=0
<=>(2x-5-5-2x)(2x-5+5+2x)=0
<=>(-10).(4x)=0
<=>(-40x)=0
<=>x =0
27x^3-54x^2+36x=8
<=>27x^3-54x^2+36x-8=0
<=>(3x-2)^3=0
<=>3x-2=0
<=>3x=2
<=>x=2/3
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét hình thang ABCD có MN//AB//CD
nên AM/AD=BN/BC
b: MA/AD+NC/BC
=BN/BC+NC/BC
=1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Rightarrowđcpm\)
a²+b²+c²+3=2(a+b+c)
=>a²-2a+1+b²-2b+1+c²-2c+1=1
=>(a-1) ² +(b-1) ² +(c-1) ²=1
=>a=b=c=1 dpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a^2+b^2+c^2+3=2a+2b+2c\)
<=>\(\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
<=>\(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Với mọi a;b;c thì \(\left(a-1\right)^2>=0\);\(\left(b-1\right)^2>=0\);\((c-1)^2>=0\)
Do đó \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2>=0\)
Để \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)thì ...(giải tìm a;b;c)
<=>a=b=c=1
Vậy a=b=c=1(đpcm)
Áp dụng BĐT Cauchy ta có:
\(a^2+a+1\ge3a\)
\(b^2+b+1\ge3b\)
\(c^2+c+1\ge3c\)
Cộng 3 vế BĐT lại ta có:
\(a^2+b^2+c^2+\left(a+b+c\right)+3\ge3.\left(a+b+c\right)\)
\(\Rightarrow a^2+b^2+c^2+3\ge2.\left(a+b+c\right)\)
Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)
Mà theo đề bài ta có:
\(a^2+b^2+c^2+3=2.\left(a+b+c\right)\)
\(a=b=c=1\) ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(A=\dfrac{2x^2+6x-x^2+2x-3-x^2-1}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+3-x+1}{x+3}\)
\(=\dfrac{8x-4}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{4}\)
\(=\dfrac{2x-1}{x-3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: A = x2 - 5x + 1 = (x2 - 5x + 25/4) - 21/4 = (x - 5/2)2 - 21/4
Ta luôn có: (x - 5/2)2 \(\ge\)0 \(\forall\)x
=> (x - 5/2)2 - 21/4 \(\ge\)-21/4 \(\forall\)x
Dấu "=" xảy ra <=> x -5/2 = 0 <=> x = 5/2
Vậy Min A = -21/4 tại x = 5/2
Ta có: B = -x + 3x + 1 = -(x - 3x + 9/4) + 13/4 = -(x - 3/2)2 + 13/4
Ta luôn có: -(x - 3/2)2 \(\le\)0 \(\forall\)x
=> -(x - 3/2)2 + 13/4 \(\le\)13/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max B = 13/4 tại x = 3/2
(xem lại đề)
![](https://rs.olm.vn/images/avt/0.png?1311)
phân tích đa thức sau thành nhân tử:
a) x2+2x-y2+1
=x\(^2\)+2x+1-y\(^2\)
=(x+1)\(^2\)-y\(^2\)
=(x+1-y)(x+1+y)
b) x2+3x-y2+3y
=x\(^2\)-y\(^2\)+3x+3y
=(x-y)(x+y)+3(x+y)
=(x+y)(x-y+3)
c) 3(x+3)-x2+9
=3(x+3)-(x\(^2\)-3\(^2\))
=3(x+3)-(x-3)(x+3)
=(x+3)[3-(x-3)]
=(x+3)(3-x+3)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Ta có: \(a^2-a-6\)
\(=a^2-3a+2a-6\)
\(=a\left(a-3\right)+2\left(a-3\right)\)
\(=\left(a-3\right)\left(a+2\right)\)
2) Ta có: \(a^2-7a+12\)
\(=a^2-3a-4a+12\)
\(=a\left(a-3\right)-4\left(a-3\right)\)
\(=\left(a-3\right)\left(a-4\right)\)
3) Sửa đề: \(a-5\sqrt{a}+6\)
Ta có: \(a-5\sqrt{a}+6\)
\(=a-2\sqrt{a}-3\sqrt{a}+6\)
\(=\sqrt{a}\left(\sqrt{a}-2\right)-3\left(\sqrt{a}-2\right)\)
\(=\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)\)
4) Ta có: \(b+\sqrt{b}-6\)
\(=b+3\sqrt{b}-2\sqrt{b}-6\)
\(=\sqrt{b}\left(\sqrt{b}+3\right)-2\left(\sqrt{b}+3\right)\)
\(=\left(\sqrt{b}+3\right)\left(\sqrt{b}-2\right)\)