Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n+1 chia hết cho n-4
=> n-4+5 chia hết cho n-4
=> n-4 chia hết cho n-4 ; 5 chia hết cho n-4
=> n-4 thuộc Ư(5)={1,5}
n-4=1 => n=5
n-5=5 => n=10
Vậy b={5,10}
n + 1 \(⋮\)n - 4
=> n - 4 + 5 \(⋮\)n - 4 mà n - 4 \(⋮\)n - 4 => 5 \(⋮\)n - 4
=> n - 4 \(\in\)Ư ( 5 ) = { 1 ; 5 }
=> n \(\in\){ 5 ; 9 }
Vậy n \(\in\){ 5 ; 9 }
Câu 13
S = 1 + 2 + 2² + ... + 2¹⁰
2S = 2 + 2² + 2³ + ... + 2¹¹
S = 2S - S
= (2 + 2² + 2³ + ... + 2¹¹) - (1 + 2 + 2² + ... + 2¹⁰)
= 2¹¹ - 1
= 2048 - 1
= 2047
Câu 14
3n + 2 = 3n - 6 + 8 = 3(n - 2) + 8
Để (3n + 2) ⋮ (n - 2) thì 8 ⋮ (n - 2)
⇒ n - 2 ∈ Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
⇒ n ∈ {-6; -2; 0; 1; 3; 4; 6; 10}
Mà n là số tự nhiên
⇒ n ∈ {0; 1; 3; 4; 6; 10}
1, Chứng minh:
B= 8888...888 - 9 + n ⋮9
n chữ số 8
Giải:
Cách 1:
Ta có \(B=888..888-9+n\)(n chữ số 8)
\(\Rightarrow B=888...8888-8n+9n-9\)(n chữ số 8)
\(\Rightarrow B=8\left(11...111-n\right)+9\left(n-1\right)\)(n chữ số 1)
Có \(111..111-n⋮9\) vì số có các chữ số cộng lại bằng số n mà khi trừ đi số n thì số đó sẽ chia hết cho 9 mà 9\(9\left(n-1\right)⋮9\)\(\Rightarrow8\left(11.1111-n\right)+9\left(n-1\right)⋮9\)\(\Rightarrow888..888-9+n⋮9\)Hay \(B⋮9\left(dpcm\right)\)
Cách 2 ( câu 1)
\(B=888...888-9+n\)
Giả sử \(B⋮9\)
Biết rằng : 1 số tự nhiên bất kì đều được viết dưới dạng tổng của 1 số chia hết cho 9 với tổng các chữ số của nó nên ta được :
\(888....888=9k+\left(8+8+8+......+8\right)\)
\(\Rightarrow B=9k+8n-9+n\)
\(\Leftrightarrow B=9k+9n-9=9\left(k+n-1\right)\)
Mà \(9\left(k+n-1\right)⋮9\)\(\Rightarrow B⋮9\left(dpcm\right)\)
a) A=102018 - 1=100...00-1 (Có 2018 chữ số 0 )
=>A=999...99 (Có 2017 chữ số 9)
=>A chia hết cho 9
mà số chí hết cho 9 thì chắc chắn chia hết cho 3
=>A chia hết cho 3 và 9
b) B=102019+2=1000...00+2 (Có 2019 chữ số 0 )
=>B=1000...02 (Có 2018 chữ số 0 )
Có tổng các chữ số của B=1+0+0....+0+2=3
=>B chia hết cho 3
3 ko chia hết cho 9
=>B ko chia hết cho 9
2 câu c và d bn làm như 2 câu a và b nha
Ta có: 3n+5⋮n+1.
(3n+3)+2⋮n+1.
3(n+1)+2⋮n+1.
mà 3(n+1)⋮n+1
⇒2⋮n+1⇒n+1∈U(2)={±1;±2}.
Ta lập bảng xét giá trị
n+1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
Vì 3n-5:hết cho n+1mà n+1 : hết cho n+1 =≫3.(n+1)
TC : 3n-5 -[3.(n+1)]:hết cho n+1
3n-5 -(3n+3) :hết cho n+1
3n- 5 - 3n-3:hết cho n+1
2:hết cho n+1 =≫n+1 thuôc Ư(2)={1;2}
thay n+1lần lượt= 1;2 là ban sẽ ra
\(2n+13=2n+8+5=2\left(n+4\right)+5\)
Vì 2(n+4) chia hết cho n+4 nên để 2n+13 chia hết cho n+4 thì 5 chia hết cho n+4 hay n+4 là ước của 5
\(\Rightarrow\left(n+4\right)\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{-9;-5;-3;1\right\}\)
Vậy với n=-9 hoặc n=-5 hoặc n=-3 hoặc n=1 thì t/m ycnt