\(\dfrac{3x-2}{2xy}+\dfrac{7x+2}{2xy}\).

b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

a) \(\dfrac{3x-2}{2xy}+\dfrac{7x+2}{2xy}\)

\(=\dfrac{\left(3x-2\right)+\left(7x+2\right)}{2xy}\)

\(=\dfrac{3x-2+7x+2}{2xy}\)

\(=\dfrac{10x}{2xy}\)

\(=\dfrac{5}{y}\)

b) \(\dfrac{5x+y^2}{x^2y}+\dfrac{x^2-5y}{xy^2}\) MTC: \(x^2y^2\)

\(=\dfrac{y\left(5x+y^2\right)}{x^2y^2}+\dfrac{x\left(x^2-5y\right)}{x^2y^2}\)

\(=\dfrac{y\left(5x+y^2\right)+x\left(x^2-5y\right)}{x^2y^2}\)

\(=\dfrac{5xy+y^3+x^3-5xy}{x^2y^2}\)

\(=\dfrac{y^3+x^3}{x^2y^2}\)

c) \(\dfrac{3x-2}{2xy}-\dfrac{7x-y}{2xy}\)

\(=\dfrac{\left(3x-2\right)-\left(7x-y\right)}{2xy}\)

\(=\dfrac{3x-2-7x+y}{2xy}\)

\(=\dfrac{-2-4x+y}{2xy}\)

d) \(\dfrac{5x+y^2}{x^2y}-\dfrac{5y-x^2}{xy^2}\) MTC: \(x^2y^2\)

\(=\dfrac{y\left(5x+y^2\right)}{x^2y^2}-\dfrac{x\left(5y-x^2\right)}{x^2y^2}\)

\(=\dfrac{y\left(5x+y^2\right)-x\left(5y-x^2\right)}{x^2y^2}\)

\(=\dfrac{5xy+y^3-5xy+x^3}{x^2y^2}\)

\(=\dfrac{y^3+x^3}{x^2y^2}\)

e) \(\dfrac{16xy}{3x-1}.\dfrac{3-9x}{12xy^3}\)

\(=\dfrac{16xy\left(3-9x\right)}{12xy^3\left(3x-1\right)}\)

\(=\dfrac{4\left(3-9x\right)}{3y^2\left(3x-1\right)}\)

\(=\dfrac{-4\left(9x-3\right)}{3y^2\left(3x-1\right)}\)

\(=\dfrac{-4.3\left(3x-1\right)}{3y^2\left(3x-1\right)}\)

\(=\dfrac{-12}{3y^2}\)

\(=\dfrac{-4}{y^2}\)

f) \(\dfrac{8xy}{3x-1}:\dfrac{12xy^3}{5-15x}\)

\(=\dfrac{8xy}{3x-1}.\dfrac{5-15x}{12xy^3}\)

\(=\dfrac{8xy\left(5-15x\right)}{12xy^3\left(3x-1\right)}\)

\(=\dfrac{2\left(5-15x\right)}{3y^2\left(3x-1\right)}\)

\(=\dfrac{-2\left(15x-5\right)}{3y^2\left(3x-1\right)}\)

\(=\dfrac{-2.5\left(3x-1\right)}{3y^2\left(3x-1\right)}\)

\(=\dfrac{-10}{3y^2}\)

28 tháng 6 2017

Phép trừ các phân thức đại số

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)

2 tháng 7 2018

a/ \(\dfrac{4x+2}{3x^2-x}:\dfrac{x^2+3x}{1-3x}=-\dfrac{4x+2}{x\left(1-3x\right)}\cdot\dfrac{1-3x}{x^2+3x}=-\dfrac{4x^2+2}{x\left(x^2+3x\right)}\)

b/ \(\dfrac{4x+6y}{x-1}:\dfrac{4x^2-12xy+9y^2}{1-x^2}=-\dfrac{2\left(2x+3y\right)}{1-x}\cdot\dfrac{\left(1-x\right)\left(1+x\right)}{\left(2x+3y\right)^2}=\dfrac{-2\left(x+1\right)}{2x+3y}=\dfrac{-2x-2}{2x+3y}\)

c/ \(\dfrac{x^4-xy^3}{2xy+y^2}:\dfrac{x^3+x^2y+xy^2}{2x+y}=\dfrac{x\left(x^3-y^3\right)}{y\left(2x+y\right)}\cdot\dfrac{2x+y}{x\left(x^2+xy+y^2\right)}=\dfrac{x\left(x-y\right)\left(x^2+xy+y^2\right)}{y}\cdot\dfrac{1}{x\left(x^2+xy+y^2\right)}=\dfrac{x-y}{y}\)

15 tháng 11 2017

2)

a) \(\dfrac{1}{x}.\dfrac{6x}{y}\)

\(=\dfrac{6x}{xy}\)

\(=\dfrac{6}{y}\)

b) \(\dfrac{2x^2}{y}.3xy^2\)

\(=\dfrac{2x^2.3xy^2}{y}\)

\(=\dfrac{6x^3y^2}{y}\)

\(=6x^3y\)

c) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)

\(=\dfrac{15x.2y^2}{7y^3.x^2}\)

\(=\dfrac{30xy^2}{7x^2y^3}\)

\(=\dfrac{30}{7xy}\)

d) \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)

\(=\dfrac{2x^2.y}{\left(x-y\right).5x^3}\)

\(=\dfrac{2y}{5x\left(x-y\right)}\)

29 tháng 6 2017

Phép chia các phân thức đại số

20 tháng 11 2022

a: \(\dfrac{5}{2x+6}=\dfrac{5\left(x-3\right)}{2\left(x+3\right)\left(x-3\right)}\)

3/x^2-9=6/2(x+3)(x-3)

b: \(\dfrac{2x}{x^2-8x+16}=\dfrac{2x}{\left(x-4\right)^2}=\dfrac{6x^2}{3x\left(x-4\right)^2}\)

\(\dfrac{x}{3x^2-12x}=\dfrac{x}{3x\left(x-4\right)}=\dfrac{x\left(x-4\right)}{3x\left(x-4\right)^2}\)

c: \(\dfrac{x+y}{x}=\dfrac{\left(x+y\right)\cdot\left(x-y\right)}{x\left(x-y\right)}\)

x/x-y=x^2/x(x-y)

e: \(\dfrac{1}{x+2}=\dfrac{2x-x^2}{x\left(x+2\right)\left(2-x\right)}\)

\(\dfrac{8}{2x-x^2}=\dfrac{8\left(x+2\right)}{x\left(2-x\right)\left(2+x\right)}\)

29 tháng 1 2019

a) \(\left(6x^3y^2-4x^2y^3-10x^2y^2\right):2xy\)

=\(\left(6x^3y^2:2xy\right)-\left(4x^2y^3:2xy\right)-\left(10x^2y^2:2xy\right)\)

\(=3x^2y-2xy^2-5xy\)

b) \(\dfrac{2y}{x-2}+\dfrac{5y}{x-2}\)

=\(\dfrac{2y+5y}{x-2}\)

=\(\dfrac{7y}{x-2}\)

c)\(\dfrac{xy}{3x-y}+\dfrac{3x^2}{y-3x}\)

\(=\dfrac{xy}{3x-y}-\dfrac{3x^2}{3x-y}\)

=\(\dfrac{x\left(y-3x\right)}{3x-y}\)

=\(\dfrac{-x\left(3x-y\right)}{3x-y}\)

=-x

d)\(\dfrac{x-1}{6x+12}.\dfrac{x+2}{x-1}\)

=\(\dfrac{\left(x-1\right)\left(x+2\right)}{6\left(x+2\right)\left(x-1\right)}\)

=\(\dfrac{1}{6}\)