Câu 8:
Gọi ?$\alph...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ai biết làm câu nào thì giúp mình với . Xin cảm ơnCâu 1:Số đường tròn đi qua 3 điểm không thẳng hàng là  Câu 2:Cho đường tròn (O;2),các tiếp tuyến AB và AC kẻ từ A đến đường tròn vuông góc với nhau tại A (B,C là các tiếp điểm).M là điểm bất kỳ trên cung nhỏ BC.Qua M kẻ tiếp tuyến với đường tròn,cắt AB và AC theo thứ tự ở D và E.Chu vi tam giác ADE là  Câu 3:Tung độ gốc của...
Đọc tiếp

Ai biết làm câu nào thì giúp mình với . Xin cảm ơn

Câu 1:
Số đường tròn đi qua 3 điểm không thẳng hàng là 
 
Câu 2:
Cho đường tròn (O;2),các tiếp tuyến AB và AC kẻ từ A đến đường tròn vuông góc với nhau tại A (B,C là các tiếp điểm).M là điểm bất kỳ trên cung nhỏ BC.Qua M kẻ tiếp tuyến với đường tròn,cắt AB và AC theo thứ tự ở D và E.Chu vi tam giác ADE là 
 
Câu 3:
Tung độ gốc của đường thẳng ?$3x-5y-10=0$ là 
 
Câu 4:
Hai đường thẳng ?$y=2x+3+m$ và ?$y=3x+5-m$ cắt nhau tại 1 điểm trên Oy.Khi đó ?$m=$ 
 
Câu 5:
Nếu 2 đường thẳng y=2x+3+m và y=x+6-m cắt nhau tại một điểm trên trục hoành thì hoành độ giao điểm đó là 
 
Câu 6:
Đường thằng ?$\frac{x}{3}-\frac{y}{8}=1$ cắt trục hoành tại A, trục tung tại B. Diện tích tam giác OAB là 
 
Câu 7:
Tam giác ABC có đường tròn nội tiếp tiếp xúc với AB,BC,CA lần lượt tại M,N,P.
Biết số đo của 3 góc A,B,C tỉ lệ với các số 3,5,2.Vậy số đo góc MNP =  ?$^0$
 
Câu 8:
Nếu 2 đường thẳng ?$y=2x+3+m$ và ?$y=x+6-m$  cắt nhau tại một điểm trên trục tung khi đó ?$m=$ 
(Nhập kết quả dưới dạng số thập phân gọn nhất)
 
Câu 9:
Diện tích tam giác đều ABC ngoại tiếp đường tròn tâm I,bán kính ?$\sqrt[4]{3}$ bằng  ?$cm^2$
(Nhập kết quả dưới dạng số thập phân gọn nhất)
 
Câu 10:
Cho tam giác ABC vuông tại A.Đường tròn (O) nội tiếp tam giác ABC tiếp xúc với AB,AC lần lượt tại D và E.
Biết AB=3 cm,AC=4cm.Bán kính đường tròn (O) là  cm.
2
16 tháng 8 2016

Ba điểm không thẳng hàng sẽ tạo thành một tam giác. Để đường tròn qua hết 3 điểm đó thì đường tròn đó sẽ là đường tròn ngoại tiếp của tam giác. 
Vì 3 điểm chỉ tạo nên 1 tam giác cho nên tam giác cúng chỉ có 1 đường tròn ngoại tiếp duy nhất. 

Kết luận: chỉ có 1.

13 tháng 8 2017

câu 5 hoành độ =0

 

13 tháng 8 2016

câu 8L \(x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)

ta thấy \(\sqrt{x}+1>=1\)

=> \(\left(\sqrt{x}+1\right)^2>=1\)

=> GTNN =1 khi x=0

bài 6: |x-1|=x+1

TH1: x-1=x+1<=> 0x=2      vô nghiệm

TH2: x-1=-1-x

<=> 2x=0<=> x=0

vậy tập nghiệm S={0}

câu 5: \(\sqrt{x^2+3}=\sqrt{4x}\) diều kiện x>=0

pt<=> \(x^2+3=4x\)

<=> x=3 hoặc x=1

vậy tập nghiệm S={1;3}

câu 2: \(\sqrt{x-2}\left(2\sqrt{x-2}-3\right)=2x-13\)

điều kiện x>=2

đặt \(\sqrt{x-2}=a\)>=0

=> pt có dạng a(2a-3)=4a2-9

<=> 2a2+3a-9=0

<=> a=-3 (loại) hoặc a=3/2

thya vào rồi giải: x-2=9/4

=> a=17/4 (thỏa )

các câu khác tương tự

 

13 tháng 8 2016

vòng mấy z

19 tháng 2 2017

Câu 6:

\(\Leftrightarrow x^2-x+24+\sqrt{x^2-x+24}=18+24\)

\(\Leftrightarrow t^2+t-42=0\) (delta(t): =1+4.42=169=13^2}

\(\Leftrightarrow\left\{\begin{matrix}t_1=\frac{-1-13}{2}\\t_2=\frac{-1+13}{2}\end{matrix}\right.\) cái (-) loại luôn

\(\Leftrightarrow x^2-x+24=6^2\Leftrightarrow x^2-x-12=0\) {delta(x)=1+12.4=49}

\(\Rightarrow\left[\begin{matrix}x_1=\frac{1-7}{2}\\x_2=\frac{1+7}{2}\end{matrix}\right.\) đáp số : x=4

19 tháng 2 2017

câu 7:

m cần thỏa mãn hệ \(\left\{\begin{matrix}m^2-3m=0\\2m^2+m\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}m=0\\m=3\end{matrix}\right.\\\left\{\begin{matrix}m\ne0\\m\ne-\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=3\)

Đáp số: m=3

12 tháng 8 2016

ta sử dụng hệ thức lượng trong tam giác vuông  

\(\frac{1}{MN^2}+\frac{1}{MP^2}=\frac{1}{AH^2}\)

mà MN=3MP/4

they vào ta đc : \(\frac{1}{\left(\frac{3}{4}MP\right)^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)

<=> \(\frac{16}{9MP^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)

<==> \(\frac{25}{9MP^2}=\frac{1}{12^2}\)=>\(MP^2=\frac{12^2.15}{9}=240\)

=> MP=\(4\sqrt{15}\)

bài 10: gống cái trên :

tiếp : tính:\(NM=\frac{3}{4}MP=3\sqrt{15}\)

áp dungnj đl pita go ta có : 

NP=\(\sqrt{MN^2+MP^2}=5\sqrt{15}\)

16 tháng 3 2017

bài này ko cần giải a~

24 tháng 3 2017

Giải:

Từ \(\left(P\right)\)\(\left(d\right)\) ta có:

\(x^2=mx-m+1\)

\(\Leftrightarrow-x^2+mx-m+1=0\)

\(\Leftrightarrow\Delta=m^2-4m+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-m+\sqrt{m^2-4m+1}}{-2}\\x_2=\dfrac{-m-\sqrt{m^2-4m+1}}{-2}\end{matrix}\right.\)

\(x_1=2x_2\)

\(\Leftrightarrow\dfrac{-m+\sqrt{m^2-4m+1}}{-2}=\dfrac{-2m-2\sqrt{m^2-4m+1}}{-2}\)

Rút gọn đẳng thức trên ta thu được:

\(3\sqrt{m^2-4m+1}+m=0\)

Chuyển \(m\) sang vế phải và bình phương cả hai vế ta thu được:

\(9m^2-36m+9=m^2\)

\(\Leftrightarrow8m^2-36m+9=0\)

Giải phương trình ta thu được 2 nghiệm của \(m\)

Vậy \(m\) có hai phần tử

8 tháng 8 2016

\(pt\Leftrightarrow\sqrt{x^2+x-6}=\sqrt{x^2+2}\)

Ta thấy 2 vế luôn dương bình phương lên ta có:

\(\sqrt{\left(x^2+x-6\right)^2}=\sqrt{\left(x^2+2\right)^2}\)

\(\Rightarrow x^2+x-6=x^2+2\)

\(\Rightarrow x^2-x^2+x=6+2\)

\(\Rightarrow x=8\)

Bất phương trình  có tập nghiệm là  với  (nhập kết quả dưới dạng số thập phân) Câu hỏi 2:Tập nghiệm của phương trình  là  {}(nhập kết quả theo thứ tự tăng dần, ngăn cách nhau bởi dấu ";") Câu hỏi 3:Nghiệm của bất phương trình  là  với   Câu hỏi 4:Bất phương trình  có nghiệm dạng  với   Câu hỏi 5:Tập nghiệm của bất phương trình  là  với   Câu hỏi 6:Một...
Đọc tiếp

Bất phương trình ?$2^{2x^{2}-1}%3C4^{x^{2}-3x+1}$ có tập nghiệm là ?$(-\infty;a)$ với ?$a=$ 
(nhập kết quả dưới dạng số thập phân)
 
Câu hỏi 2:

Tập nghiệm của phương trình ?$log_{2}[x(x-1)]=1$ là ?$S=$ {}
(nhập kết quả theo thứ tự tăng dần, ngăn cách nhau bởi dấu ";")
 
Câu hỏi 3:

Nghiệm của bất phương trình ?$(0,2)^{-x}%3C25^{\frac{1}{2x}}$ là 
?$x\in(-\infty;a)\cup(0;1)$ với ?$a=$ 
 
Câu hỏi 4:

Bất phương trình ?$4^{x}.3^{3}%3E3^{x}.4^{3}$ có nghiệm dạng ?$x\in(a;+\infty)$ với ?$a=$ 
 
Câu hỏi 5:

Tập nghiệm của bất phương trình ?$\frac{1}{25^{\sqrt%20{x^{2}-2x}}}%3C5^{x-2}$ là ?$(a;+\infty)$ với ?$a=$ 
 
Câu hỏi 6:

Một hình nón có góc ở đỉnh là ?$60^{0}$. Diện tích đường tròn đáy là ?$16$?$\pi$. Khi đó thể tích của khối nón là  ?$.\pi$ (đvtt)
(tính chính xác đến hai chữ số thập phân)
 
Câu hỏi 7:

Một hình nón có chiều cao và bán kính đáy đều bằng ?$3$. Một mặt phẳng qua đỉnh ?$S$ của hình nón và hợp với mặt phẳng đáy 1 góc ?$60^{0}$ thì diện tích của thiết diện là 
(nhập kết quả dưới dạng số thập phân, làm tròn đến hàng phần trăm)
 
Câu hỏi 8:

Cho hình chóp tam giác đều ?$S.%20ABC$ có ?$SA=AB=3$. Một khối nón có đỉnh ?$S$ và mặt
đáy là đường tròn ngoại tiếp tam giác ?$ABC$ có thể tích bằng ?$.\pi$
(nhập kết quả dưới dạng số thập phân, làm tròn đến hàng phần trăm)
 
 
Câu hỏi 9:

Bất phương trình ?$log_{2}x+log_{3}x%3E1+log_{2}x.log_{3}x$ có nghiệm dạng
?$x\in(a;3)$ với ?$a=$ 
 
Câu hỏi 10:

Số thực ?$x$ nhỏ nhất thỏa mãn bất phương trình ?$(2+\sqrt%20{3})^{x^{2}-2x+1}+(2-\sqrt%20{3})^{x^{2}-2x-1}\le%20\frac{4}{2-\sqrt%20{3}}$ là 
(tính chính xác đến haic hữ số thập phân)
2
24 tháng 1 2016

bài này trong violympic đúng ko


Bất phương trình  có tập nghiệm là  với  
(nhập kết quả dưới dạng số thập phân)

 

Câu hỏi 2:


Tập nghiệm của phương trình  là  {}
(nhập kết quả theo thứ tự tăng dần, ngăn cách nhau bởi dấu ";")

 

Câu hỏi 3:


Nghiệm của bất phương trình  là 
 với 

 

Câu hỏi 4:


Bất phương trình  có nghiệm dạng  với 

 

Câu hỏi 5:


Tập nghiệm của bất phương trình  là  với 

 

Câu hỏi 6:


Một hình nón có góc ở đỉnh là . Diện tích đường tròn đáy là . Khi đó thể tích của khối nón là   (đvtt)
(tính chính xác đến hai chữ số thập phân)

 

Câu hỏi 7:


Một hình nón có chiều cao và bán kính đáy đều bằng . Một mặt phẳng qua đỉnh  của hình nón và hợp với mặt phẳng đáy 1 góc  thì diện tích của thiết diện là 
(nhập kết quả dưới dạng số thập phân, làm tròn đến hàng phần trăm)

 

Câu hỏi 8:


Cho hình chóp tam giác đều  có . Một khối nón có đỉnh  và mặt
đáy là đường tròn ngoại tiếp tam giác  có thể tích bằng 
(nhập kết quả dưới dạng số thập phân, làm tròn đến hàng phần trăm)

 

Câu hỏi 9:


Bất phương trình  có nghiệm dạng
 với 

 

Câu hỏi 10:


Số thực  nhỏ nhất thỏa mãn bất phương trình  là 
(tính chính xác đến haic hữ số thập phân)Câu hỏi tương tự Đọc thêm

Toán lớp 9

                

 

12 tháng 8 2016

\(\sqrt{\frac{3x-1}{x+2}}=\sqrt{5}\)

<=> \(\begin{cases}\frac{3x-1}{x+2}\ge0\\3x-1=5x+10\end{cases}\)

=> x=-11/2

thay x=-11/2 vào \(\frac{3x-1}{x+2}\)>=0 thỏa 

=> nghiệm bpt là x=-11/2