Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\sqrt{2a}.\sqrt{18a}=\sqrt{2a}.3\sqrt{2a}=3.2a=6a\)
\(b.\sqrt{3a.27ab^2}=\sqrt{9a^2b^2.9}=9\text{ |}ab\text{ |}\)
\(c.2y^2.\sqrt{\dfrac{x^4}{4y^2}}=2y^2.\dfrac{x^2}{-2y}=-x^2y\)
\(d.\dfrac{y}{x}.\sqrt{\dfrac{x^2}{y^4}}=\dfrac{y}{x}.\dfrac{x}{y^2}=\dfrac{1}{y}\)
\(e.\sqrt{\dfrac{9a^2}{16}}=\dfrac{3\text{ |}a\text{ |}}{4}\)
\(f.\sqrt{10.16a^2}=-4a\sqrt{10}\)
\(g.\sqrt{a^4\left(3-a\right)^2}=a^2\left(a-3\right)\)
\(h.\sqrt{\dfrac{2a^2b^4}{98}}\sqrt{\dfrac{a^2b^4}{49}}=\dfrac{b^2\text{ |}a\text{ |}}{7}\)
a: \(M=\dfrac{x+6\sqrt{x}-3\sqrt{x}+18-x}{x-36}\)
\(=\dfrac{3\left(\sqrt{x}+6\right)}{x-36}=\dfrac{3}{\sqrt{x}-6}\)
b: \(N=\dfrac{x^2}{y}\cdot\sqrt{xy\cdot\dfrac{y}{x}}-x^2\)
\(=\dfrac{x^2}{y}\cdot y-x^2=0\)
a: \(\dfrac{5}{3\sqrt{8}}=\dfrac{5\sqrt{2}}{3\cdot4}=\dfrac{5\sqrt{2}}{12}\)
\(\dfrac{2}{\sqrt{b}}=\dfrac{2\sqrt{b}}{b}\)
b: \(\dfrac{5}{5-2\sqrt{3}}=\dfrac{25+10\sqrt{3}}{13}\)
\(\dfrac{2a}{1-\sqrt{a}}=\dfrac{2a\left(1+\sqrt{a}\right)}{1-a}\)
c: \(\dfrac{4}{\sqrt{7}+\sqrt{5}}=\dfrac{4\left(\sqrt{7}-\sqrt{5}\right)}{2}=2\sqrt{7}-2\sqrt{5}\)
\(\dfrac{6a}{2\sqrt{a}-\sqrt{b}}=\dfrac{6a\left(2\sqrt{a}+\sqrt{b}\right)}{4a-b}\)
a) \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm.
Đẳng thức khi \(a=b=c\)
b) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm
Đẳng thức khi \(a=b=1\)
Các bài tiếp theo tương tự :v
g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)
i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)
Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)
Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm
j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm
a) \(ab^2\cdot\sqrt{\dfrac{3}{a^2b^4}}=ab^2\cdot\dfrac{\sqrt{3}}{\sqrt{a^2b^4}}=ab^2\cdot\dfrac{\sqrt{3}}{ab^2}\)
= \(\sqrt{3}\)
b) b. \(\sqrt{\dfrac{27\cdot\left(a-3\right)^2}{48}=}\dfrac{\sqrt{27}\cdot\sqrt{\left(a-3\right)^2}}{\sqrt{48}}\)
= \(\dfrac{3\cdot\sqrt{3}\cdot\left(a-3\right)}{\sqrt{3}\cdot\sqrt{16}}=\dfrac{3\cdot\left(a-3\right)}{4}\)
= 0.75*(a-3)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Phác Chí Mẫn - Toán lớp 9 | Học trực tuyến
a: \(=4\left|a-3\right|=4\left(a-3\right)=4a-12\)
b: \(=9\cdot\left|a-9\right|=9\left(9-a\right)=81-9a\)
c: \(a^3b^6\cdot\sqrt{\dfrac{3}{a^6b^4}}=a^3b^6\cdot\dfrac{\sqrt{3}}{-a^3b^2}=-b^4\sqrt{3}\)
d: \(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{a-b}\)
\(=\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)
Trả lời:
a. Áp dụng BĐT Cô-si: x + y\(\ge\) \(2\sqrt{xy}\) (với x,y\(\ge\)0)
Ta có: a + b\(\ge\)\(2\sqrt{ab}\)
b+c\(\ge\)\(2\sqrt{bc}\)
c+a\(\ge\)\(2\sqrt{ca}\)
\(\Rightarrow\) (a+b)(b+c)(c+a) \(\ge\)\(8\sqrt{a^2b^2c^2}\)= 8abc (đpcm)
b. Áp dụng BĐT Cô-si: \(\sqrt{ab}\)\(\le\)\(\dfrac{a+b}{2}\) ( với a,b\(\ge\)0)
Ta có: \(\sqrt{3a\left(a+2b\right)}\)\(\le\)\(\dfrac{3a+a+2b}{2}\)=\(\dfrac{4a+2b}{2}\)=2a+b
\(\Rightarrow\) \(a\sqrt{3a\left(a+2b\right)}\)\(\le\)a(2a+b) = 2a2+ab
CMTT: \(b\sqrt{3b\left(b+2a\right)}\)\(\le\)b(2b+a) = 2b2+ab
\(\rightarrow\)\(a\sqrt{3a\left(a+2b\right)}\)+\(b\sqrt{3b\left(2b+a\right)}\)\(\le\) 2a2+ab+2b2+ab
= 2(a2+b2)+2ab =6(đpcm)
c. Áp dụng BĐT Cô-si với 3 số a+b; b+c;c+a
Ta có: (a+b)(b+c)(c+a)\(\le\)\(\left(\dfrac{2\left(a+b+c\right)}{3}\right)^3\)
\(\Leftrightarrow\) 1 \(\le\) \(\dfrac{8}{27}\left(a+b+c\right)^3\)
\(\Leftrightarrow\) (a+b+c)3 \(\ge\) \(\dfrac{8}{27}\)
\(\Leftrightarrow\) a+b+c \(\ge\) \(\dfrac{3}{2}\) (1)
Lại có: (a+b)(b+c)(c+a) = (a+b+c)(ab+bc+ca) -abc
\(\Leftrightarrow\) 1= (a+b+c)(ab+bc+ca) - abc
\(\Leftrightarrow\) ab+bc+ca = \(\dfrac{1+abc}{a+b+c}\) (2)
Theo câu a. (a+b)(b+c)(c+a) \(\ge\) 8abc
\(\Leftrightarrow\) 1 \(\ge\) 8abc
\(\Leftrightarrow\) abc \(\le\)\(\dfrac{1}{8}\) (3)
Từ (1),(3) kết hợp với (2)
\(\Rightarrow\) ab+bc+ca \(\le\) \(\dfrac{1+\dfrac{1}{8}}{\dfrac{3}{2}}\) = \(\dfrac{3}{4}\) (đpcm)
\(ab\cdot\sqrt{\dfrac{a}{3b}}-a^2\sqrt{\dfrac{3b}{a}}\)
\(=a\sqrt{ab}-a^2\cdot\dfrac{\sqrt{3b}}{\sqrt{a}}\)
\(=a\sqrt{ab}-a\sqrt{a}\cdot\sqrt{3b}\)
\(=a\sqrt{ab}\left(1-\sqrt{3}\right)\)
\(\Leftrightarrow m=\dfrac{a\sqrt{ab}\left(1-\sqrt{3}\right)}{\sqrt{3ab}}=\dfrac{a\left(\sqrt{3}-3\right)}{3}\)