Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 15 + 23 = 1 + 8 = 9 = 32 ( là số chính phương )
b) 52 + 122 = 25 + 144 = 169 = 132 ( là số chính phương )
c) 26 + 62 = 64 + 36 = 100 = 1002 ( là số chính phương )
d) 13 + 23 + 33 + 43 + 53 + 63
= 1 + 8 + 27 + 64 + 125 + 216
= 441 = 212 ( là số chính phương )
a) 15 + 23=1 + 8 = 9 (là số chính phương)
b) 52 + 122= 25 + 144= 169 (là số chính phương)
c) 26 + 62= 64 + 36=100 (là số chính phương)
d) 142 – 122= 196 - 144=52 (không là số chính phương)
e) 13 + 23 + 33 + 43 + 53 + 63= 1 + 8 + 27 + 64 + 125 + 216 = 411 (là số chính phương)
S = 1 + 3 + 32 + 33 + ... + 38 + 39
S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 38 + 39 )
S = 4 + ( 1 . 32 + 3 .32 ) + .. + ( 1. 38 + 3 . 38 )
S = 4 + 4 .32 + .. + 4 . 38
S = 4 ( 1 + 32 + ... + 38 ) \(⋮\)4
Vậy S \(⋮\)4 ( đpcm )
Học tốt
#Dương
S = 1 + 3 + 32 + 33 + 34+35+ 36 + 37 + 38+39
S=( 1 + 3)+(32 + 33)+(34+35)+(36 + 37)+(38+39)
s=4+32.(3+1)+32.(3+1)+34.(3+1)+36.(3+1)+38.(3+1)
S=4.(1+32+34+36+38)
CHIA HẾT CHO 4
So sánh :
a ) 31^11 và 17^14
31^11 < 32^11= (25)11 = 2^55
=> 31^11 < 2^55
17^14>16^14=(24)14 = 2^56
=>17^14>2^56
=>31^11 < 2^55 < 2^56 < 17^14
=>31^11 < 17^14
b ) 3^500 và 7^300
3^500 = ( 35)100 = 243100
7^300 = ( 73)100 = 343100
=> 243100 < 343100
=> 3^500 < 7^300
Tìm x :
a ) 2x . 4 = 128
=> 2x = 32
=> 2x = 25
=> x = 5
b ) 2x . 22 = ( 23)2 = 64
=> 2x = 64 : 22 = 16
=> 2x = 24
=> x = 4
Bài cuối bạn tham khảo tại : Câu hỏi của Linh Phan - Toán lớp 6 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/198524999512.html
\(S=1+4+4^2+...+4^{49}\)
\(4S=4+4^2+...+4^{50}\)
\(4S-S=4^{50}-1\)
\(3S=4^{50}-1\)
\(S=\frac{4^{50}-1}{3}\)
Hc tốt
\(S=1+4+4^2+...+4^{49}\)
\(4S=\left(4+4^2+...+4^{50}\right)\)
\(4S-S=3S=\left(4+4^2+...+4^{50}\right)-\left(1+4+4^2+...+4^{49}\right)=4^{50}-1\)
\(\Rightarrow S=\frac{4^{50}-1}{3}\)
A= 1+2+22+23+.......+298+299
A= (1+2)+(22+23)+.......+(298+299 )
A=3+22.(1+2)+...+298.(1+2)
A= 3+22.3+...+298.3
A=3.(22+...+298)
Vid 3 chia hết cho 3 nên A chia hết cho 3
Đơn giản như đang giỡn
HT
\(A=3+3^2+3^3+...+3^{2020}\)
\(3A=3^2+3^3+3^4+...+3^{2021}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{2021}\right)-\left(3+3^2+3^3+...+3^{2020}\right)\)
\(2A=3^{2021}-3\)
\(A=\frac{3^{2021}-3}{2}\)
Từ đây cũng suy ra \(x=2021\).
\(B=3+3^2+3^3+...+3^{300}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{298}+3^{299}+3^{300}\right)\)
\(B=\left(3+3^2+3^3\right)+3^3\cdot\left(3+3^2+3^3\right)+...+3^{297}\cdot\left(3+3^2+3^3\right)\)
\(B=39+3^3\cdot39+...+3^{297}\cdot39\)
\(B=39\cdot\left(1+3^3+...+3^{297}\right)\)
Vậy B chia hết cho 39