K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2021

A B C H

Vì \(\Delta ABC\)vuông tại \(A,\)và \(AH\perp BC\)nên:

     \(S_{\Delta ABC}=\frac{AB.AC}{2}=\frac{BC.AH}{2}\)

                 \(\Rightarrow AB.AC=BC.AH\)

Ta có: \(AB.AC=BC.AH\)

   \(\Leftrightarrow AB^2.AC^2=BC^2.AH^2\)

   \(\Leftrightarrow\frac{AB^2.AC^2}{BC^2}=AH^2\)

mà \(AB^2+AC^2=BC^2\)( Định lí Pi-ta-go )

   \(\Leftrightarrow\frac{AB^2+AC^2}{AB^2.AC^2}=\frac{1}{AH^2}\)

   \(\Leftrightarrow\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\left(ĐPCM\right)\)

11 tháng 1 2021

Hình vẽ của mình chỉ mang tính chất minh họa nên các bn bỏ qua một số lỗi vẽ hình của mình nha ^_^

5 tháng 2 2018

Câu hỏi của Maii Tômm (Libra) - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

13 tháng 3 2018

nhưng bài này lớp 7 mà

21 tháng 4 2020

co mot con chim

21 tháng 4 2020

Hiện tại hình không vẽ được mình chỉ ghi lời giải thôi nha !

\(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{AB^2+AC^2}{AB^2\cdot AC^2}=\frac{BC^2}{AB^2\cdot AC^2}\)

Theo công thức tính diện tích tam giác vuông ta có:\(S=\frac{1}{2}AH.BC=\frac{1}{2}AB.AC\)

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH^2.BC^2=AB^2.AC^2\)

Khi đó \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{BC^2}{AB^2\cdot AC^2}=\frac{BC^2}{AH^2\cdot BC^2}=\frac{1}{AH^2}\)

=> đpcm

2 tháng 3 2020

Tham khảo: Câu hỏi của Lee Linh 

25 tháng 5 2020

a. Ta có: \(\Delta ABC\) vuông tại \(A\)

\(\Rightarrow\) \(S_{\Delta ABC}=\frac{1}{2}AH.BC=\frac{1}{2}AB.AC\)

\(\Rightarrow AH.BC=AB.AC\)

\(\Rightarrow AH=\frac{AB.AC}{BC}\)

\(\Rightarrow\)\(\frac{1}{AH}=\frac{BC}{AB.AC}\)

\(\Rightarrow\)\(\frac{1}{AH^2}=\frac{BC^2}{AB^2.AC^2}\) (1)

Lại có: \(BC^2=AB^2+AC^2\) (định lý Pi-ta-go)

(1) \(\Rightarrow\) \(\frac{1}{AH^2}=\frac{AB^2+AC^2}{AB^2+AC^2}\)

\(\Rightarrow\) \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\) (đpcm)

29 tháng 5 2018

a )

Xét : \(\Delta ABHva\Delta ADH,co:\)

\(\widehat{H_1}=\widehat{H_2}=90^o\left(gt\right)\)

BH = HD ( gt )

AH là cạnh chung 

Do do : \(\Delta ABH=\Delta ADH\left(c-g-c\right)\)

b ) 

Ta có : \(\Delta ABD\) là tam giác đều ( cmt ) 

= > \(\widehat{BAD}=60^o\) ( trong tam giác đều mỗi góc bằng 60o ) 

Ta có : \(\widehat{CAD}=\widehat{BAC}-\widehat{BAD}=90^o-60^o=30^o\) ( tia AD nằm giữa 2 tia AB và AC )

Hay  :  \(\widehat{EAD}=30^o\left(E\in AC\right)\)  

Ta có :\(\widehat{ADH}=60^o\) ( \(\Delta ABD\) là tam giác đều ) 

Ta có : \(\widehat{HAD}=\widehat{H_2}-\widehat{ADH}=90^o-60^o=30^o\)

Ta có : \(AH\perp BC\) và  \(ED\perp BC\)

= > \(AH//ED\) ( vì cùng vuông góc với BC ) 

=> \(\widehat{HAD}=\widehat{ADE}=30^o\) ( 2 góc so le trong của AH//ED ) 

=> \(\Delta AED\) là tam giác cân , và cân tại E ( vì có 2 góc ở đáy bằng nhau ( \(\widehat{HAD}=\widehat{ADE}=30^o\)) ) 

c ) mình không biết chứng minh AH = HF = FC  nha , mình chỉ chứng minh \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\) thôi nha :

Ta có : \(\Delta ABC\) vuông tại A  và AH là đường cao  ( gt ) 

= > \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)  ( hệ thức lượng trong tam giác vuông ) 

 Hình mình vẽ hơi xấu , thông cảm nha 

HỌC TỐT !!! 

  

29 tháng 5 2018

a) Tam giác ABC có AH là đường cao đồng thời là trung tuyến ( BH=HD)

\(\rightarrow\) tam giác ABD cân tại A

Mà  \(\widehat{B}\) = 60 độ \(\rightarrow\) tam giác ABD đều

b) Tam giác ABD đều nên \(\widehat{ADB}\) = \(\widehat{BAD}\) = 60 độ

\(\rightarrow\) \(\widehat{ADE}\) = \(\widehat{HDE}\) - \(\widehat{ADB}\) = 30 độ

Tương tự có \(\widehat{DAE}\) = 30độ

\(\Rightarrow\) Tam giác ADE cân tại E

c1) Xét tam giác AHC và tam giác CFA

           \(\widehat{ACF}\) = \(\widehat{CAF}\) = 30độ

           AC chung

\(\rightarrow\) tam giác bằng nhau ( cạnh huyền - góc nhọn)

\(\rightarrow\) AH = FC

Ta có \(\widehat{BAD}\) = 60 độ và \(\widehat{BAH}\) = 30 độ

\(\rightarrow \) \(\widehat{HAD}\) = 30 độ hay \(\widehat{HAF}\) = 30 độ

 ____Phần còn lại cm tam giác HAF cân là ra 

Mk bận chút việc nên ms làm đến đây thui nka ~