Câu 5. Chứng minh rằng tích 6 số tự nhiên liên tiếp chia hết cho 48.
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2023

Gọi 6 số đó là:

\(x,\left(x+1\right),\left(x+2\right),\left(x+3\right),\left(x+4\right),\left(x+5\right)\)

Mà: \(x\left(x+1\right)\) là hai số tự nhiên liên tiếp nên sẽ chia hết cho 2

\(\left(x+2\right)\left(x+3\right)\) là hai số tự nhiên liên tiếp nên sẽ chia hết cho 2

\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) chia hết cho 2.2 = 4 

Mà: \(x\left(x+1\right)\left(x+2\right)\) chia hết cho 3

\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) sẽ chia hết cho 4.3 = 12 

Và: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)\) sẽ chia hết cho 4 nên

\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)\) sẽ chia hết cho 12.4 = 48

23 tháng 7 2017

a)Ta có:
n+(n+1)+(n+2)=n+n+1+n+2

=3n+(1+2+3)

=3n+6.

=3(n+2)

Vì n+2EN.

=>3(n+2) chia hết cho 3.

b)Cách lm tương tự.

Ủng hộ nhá!
 

a) gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ( a thuộc N )

ta có : a + ( a + 1 ) + ( a + 2 ) = 3a + 3 = 3.( a + 1 ) chia hết cho 3 

vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3 

b) gọi tổng 4 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ; a + 3 ( a thuộc N )

ta có : a + ( a + 1 ) + ( a + 2 ) + ( a +3 ) = 4a + 6 không chia hết cho 4 (  không chia hết cho 4 )

vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4

26 tháng 6 2017

a)(x - 45) . 27 = 0 

x-45=0:27

x-45=0

x=0+45

x=45.

b)23 . (42 - x) = 23

42-x=23:23

42-x=1

x=42-1

x=41

26 tháng 6 2017

Câu 1:

a)(x-45)*27=0.

=>x-45=0:27.

=>x-45=0.

=>x=0+45.

=>x=45.

Vậy......

b)23*(42-x)=23.

=>42-x=23:23.

=>42-x=1.

=>x=42-1.

=>x=41.

Vậy....

Câu 2:Có vấn đề về đề bài.

4 tháng 12 2021

scjb

l

lbjsc

jlb  jkscd

l  D

kc K
đsdCBU
osdob

jvjob

sadvkj

bsd

jkbvdsl

kn 

kjbsđ jbo


jkb bjk

4 tháng 12 2021

ưởqvbuob

khr

wibuvibu

dhoidwhouvwouhdvbiowdobvvudsukhc

owdo

hfdauovoibadPhuo

Bài 1 : 

Gọi 3 số chẵn liên tiếp là \(2a-2,2a,2a+2\)

Tích 3 số \(\left(2a-2\right)2a\left(2a+2\right)=8.\left(a-1\right)a\left(a+1\right)\)

Vì \(\left(a-1\right)a\left(a+1\right)⋮3\)\(\Leftrightarrow\left(a-1\right)a\left(a+1\right)⋮6\)

nên \(\left(2a-2\right).2a.\left(2a+2\right)\)

Vậy \(\left(2a-2\right).2a.\left(2a+2\right)\)

Bài 2 

a) \(\left(5^n-1\right)⋮4\)

Nếu \(n=1\)thì \(5^n-1=4⋮4\)

Nếu \(n>1\)thì \(5^n\)có hai chữ số tận cùng là \(25\Rightarrow5^n-1\)có hai chữ số tận cùng là \(24\),chia hết cho  \(4\)

Vậy \(\left(5^n-1\right)⋮4\)

b) \(\left(10^n+18n-1\right)⋮27\)

Ta có :\(10^n-1=99.....9\)(n chữ số 9)

\(\Rightarrow10^n+18n^{ }-1=99...9+18n=9.\left(11....1+2n\right)\)(n chữ số 1 )

Ta có \(\left(11....1+2n\right)⋮3\)( Vì \(11...1+2n\)có tổng các chữ số bằng \(3n⋮3\)

\(\Rightarrow\left(10^n+18n-1\right)⋮9.3\)hay \(\left(10^n+18n-1\right)⋮27\)

Chúc bạn học tốt ( -_- )

18 tháng 7 2017

1,

\(A=2^0+2^1+2^2+..+2^{2006}\)

\(=1+2+2^2+...+2^{2016}\)

\(2A=2+2^2+2^3+..+2^{2007}\)

\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)

           \(A=2^{2017}-1\)

\(B=1+3+3^2+..+3^{100}\)

\(3B=3+3^2+3^3+..+3^{101}\)

\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)

\(2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{100}-1}{2}\)

\(D=1+5+5^2+...+5^{2000}\)

\(5D=5+5^2+5^3+...+5^{2001}\)

\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)

\(4D=5^{2001}-1\)

\(D=\frac{5^{2001}-1}{4}\)

18 tháng 7 2017

các bn giúp mk nha càng nhanh càng tốt

ai nhanh mk TC cho

14 tháng 10 2018

a, gọi 3 số tự nhiên liên tiếp đó là : a; a + 1; a + 2

tổng của chúng là :

a + a + 1 + a + 2

= (a + a + a) + (1 + 2)

= 3a + 3

= 3(a + 1) ⋮ 3 (đpcm)

b, trong 2 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 2

=> tích của chúng chia hết chô 2 (đpcm)

c, gọi số tự nhiên có 3 chữ số giống nhau là : aaa (a là chữ số)

aaa = a.111 = a.3.37 ⋮ 37 (đpcm)

d, ab + ba 

= 10a + b + 10b + a

= (10a + a) + (10b + b)

= 11a + 11b

= 11(a + b) ⋮ 11 (đpcm)

14 tháng 10 2018

d, ab + ba 

= 10a + b + 10b + a

= a ( 10 + 1) + b(10+1)

= a.11 + b.11

= ( a + b ).11 \(⋮\)11

    Vậy ab + ba \(⋮\)11

             Hok tốt