Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\text{GIẢI :}\)
A B C H D O I x y
a) Xét \(\diamond\text{ACDO}\) có \(\widehat{\text{OAC}}=\widehat{\text{ACD}}=\widehat{\text{CDO}}\text{ }\left(=90^0\right)\)
\(\Rightarrow\text{ }\diamond\text{ACDO}\) là hình chữ nhật.
mà \(AC=CD\text{ }\Rightarrow\text{ }\diamond\text{ACDO}\) là hình vuông.
b) Xét ABC , có : \(\widehat{ACB}=90^0-\widehat{ABC}\) (1)
Xét ABH , có : \(\widehat{BAH}=90^{\text{o}}-\widehat{ABH}\)
hay \(\widehat{BAH}=90^{\text{o}}-\widehat{ABC}\) (2)
Từ (1) và (2) \(\Rightarrow\text{ }\widehat{BAH}=\widehat{ACB}\).
Xét \(\bigtriangleup\text{ABC và }\bigtriangleup\text{OIA}\), có :
\(\widehat{IOA}=\widehat{BAC}\text{ }\left(90^{\text{o}}\right)\)
\(AO=AC\) (vì \(\diamond\text{ACDO}\) là hình vuông)
\(\widehat{IAO}=\widehat{ACB}\) (vì \(\widehat{BAH}=\widehat{ACB}\), \(\widehat{IAO}\) và \(\widehat{BAH}\) đối đỉnh)
\(\Rightarrow\bigtriangleup\text{ABC}=\bigtriangleup\text{OIA}\) (g.c.g)
\(\Rightarrow\text{ IA = BC}\) (2 cạnh tương ứng) (đpcm).

A B C E D
Gọi BE là đường thẳng song song với AD; \(E\in AC\)
Vì \(BE//AD\Rightarrow\widehat{ABE}=\widehat{BAD}\)( hai góc so le trong )
Mà vì AD là tia phân giác của \(\widehat{BAC}\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{\widehat{BAC}}{2}=\frac{120^o}{2}=60^o\)
\(\Rightarrow\widehat{ABE}=60^o\)
Lại có : \(\widehat{BAC}+\widehat{BAE}=180^o\)( \(E\in BC\))
\(\Rightarrow120^o+\widehat{BAE}=180^o\Rightarrow\widehat{BAE}=180^o-120^o=60^o\)
Xét \(\Delta ABE\)có : \(\widehat{BAE}=\widehat{ABE}=60^o\)
\(\Rightarrow\Delta ABE\)là tam giác đều ( tính chất + hệ quả tam giác cân )
\(\Rightarrow BE=AE=AB=6\)( Đơn vị đo )
Do \(BE//AD\Rightarrow\frac{AD}{BE}=\frac{AC}{EC}=\frac{12}{AC+AE}=\frac{12}{12+6}=\frac{12}{18}=\frac{2}{3}=\frac{AD}{6}\)
\(\Rightarrow AD=\frac{2\cdot6}{3}=4\)( đơn vị đo )
Một lần nữa tớ lại xin lỗi vì cái hình củ chuối ạ. Mong cậu xem phần mình chứng minh để dựng hình sao cho chuẩn với đề bài.

a.vì tứ giác ABCD là hình bình hành
suy ra AB//CD, AB = CD
vì AB = CD mà M, N lần lượt là trung điểm AB, CD
suy ra AM = CN
mà AM//CN (M, N thuộc AB, CD) và AM = CN
\(\Rightarrow\) tứ giác AMCN là hình bình hành
b.MF//AE, M là trung điểm AB nên MF là đường trung bình của tam giác
Suy ra F là trung điểm của BE
c.vì AMCN là hình bình hành
suy ra AN//CM
xét tam giác ABE có
MF//AE, M là trung điểm AB
suy ra MF là đường trung bình của tam giác
suy ra F là trung điểm BE
chứng minh tương tự với tam giác CDF, ta được E là trung điểm DF
từ đó suy ra DE = EF = FB
a) Xét hình bình hành ABCD có:
AB=CD => AM=CN (1)
AB//CD => AM//CN (2)
Từ (1) và (2) => Tứ giác AMCN là hình bình hành (dấu hiệu 3)
b) Ta có: MF//AE (do CM//AN)
Xét tam giác BEA có:
MF//AE
AM=MB
=> MF là đường trung bình của tam giác BEA
=> EF=FB hay F là trung điểm của BE
c) Ta có: CF//NE (do CM//AN)
Xét tam giác DFC có:
DN=NC
CF//NE
=> NE là đường trung bình của tam giác DFC
=> DE=EF
mà EF=FB nên DE=EF=FB

bạn dùng tính chất đương phân giác rồi suy ra tỉ leejj bằng nhau
A D B C K I 1 1 2 1
a) Vì ABCD là hình bình hành ( GT )
\(\Rightarrow AD//BC\left(Tc\right)\)
\(\Rightarrow\widehat{KAI}=\widehat{AIB}\)( 2 góc so le trong )
Mà \(\widehat{KAI}=\widehat{BAI}\)( vì AI là phân giác của góc BAD )
\(\Rightarrow\widehat{AIB}=\widehat{BAI}\)
Xét \(\Delta ABI\)có : \(\widehat{AIB}=\widehat{BAI}\)
\(\Rightarrow\Delta ABI\) cân tại B ( Dấu hiệu nhận biết )
b) Ta có : CK là phân giác của góc DCI ( GT )
\(\Rightarrow\widehat{C_1}=\widehat{C_2}=\frac{\widehat{DCI}}{2}\left(1\right)\)
AI là phân giác của góc BAK ( GT )
\(\Rightarrow\widehat{BAI}=\widehat{A_1}=\frac{\widehat{BAK}}{2}\left(2\right)\)
Mà \(\widehat{BAK}=\widehat{DCI}\) ( ABCD là hình bình hành ) (3)
Từ ( 1 ) ,(2 ) ,( 3)
\(\Rightarrow\widehat{BAI}=\widehat{C_2}\)
Mà \(\widehat{BAI}=\widehat{BIA}\)( chứng minh trên)
\(\Rightarrow\widehat{BIA}=\widehat{C_2}\)
c) Bạn tự làm nốt nha !

Giải :
a) Xét \(\Delta HBA\)và \(\Delta ABC\)có :
\(\widehat{BHA}=\widehat{BAC}=90^o\)
\(\widehat{B}\)chung
\(\Rightarrow\Delta HBA~\Delta ABC\left(g.g\right)\)
phần B đề sai sửa đề AH2 = HB . HC
Áp dụng hệ thức cạnh trong \(\Delta\)vuông ta có :
\(AH^2=HB.HC\)( đpcm )
chuyên toán thcsLớp 8 chưa học các HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG phải đi c.m chứ

Vì AB//CD
=> A + D = 180° ( trong cùng phía)
Mà A = 3D
=> 3D + D = 180°
=> 4D = 180°
=> D = 45°
=> A = 180° - 45° = 135°
Vì ABCD là hình thang cân
=> A = B = 135°
=> C = D = 45°
Đây là trường hợp định lý Thales thuận trong tam giác. Khi một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại, thì nó chia hai cạnh đó theo cùng một tỉ lệ.
✅ Theo định lý Thales, ta có:
\(\frac{A D}{D B} = \frac{A E}{E C}\)
Vậy đáp án đúng là:
A. \(\frac{A D}{D B} = \frac{A E}{E C}\)
giúp mink với