Câu 4 (3 điểm): Cho ΔABC vuông tại A có đường cao AH (H
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 3 2023

Xét hai tam giác vuông BHA và BAC có:

\(\left\{{}\begin{matrix}\widehat{B}\text{ chung}\\\widehat{BHA}=\widehat{BAC}=90^0\end{matrix}\right.\)

\(\Rightarrow\Delta BHA\sim\Delta BAC\left(g.g\right)\)

Xét ΔBHA và ΔBAC có:

\(\widehat{ABC}chung\)

\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)

⇒ ΔBHA ∾ ΔBAC ( g.g )

loading...

 

15 tháng 4 2018

A B C H E D 9 12

a.

Ta có tam giác ABC vuông tại A

=> BC2 = AB2 + AC2

=> BC2 = 92 + 122

=> BC2 = 225

=> BC = 15 (cm)

Ta có BD là phân giác của góc ABC

=> \(\dfrac{DA}{DC}=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\Rightarrow\dfrac{DA}{3}=\dfrac{DC}{5}\)

\(\Rightarrow\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{8}=\dfrac{12}{8}=\dfrac{3}{2}\)

\(\Rightarrow DA=\dfrac{3.3}{2}=4,5\left(cm\right)\)

\(DC=\dfrac{3.5}{2}=7,5\left(cm\right)\)

b. ko rõ đề-.-

15 tháng 4 2018

b.

Xét tam giác BEH và tam giác BCI có:

Góc H = C = 90o

Do đó: tam giác: BEH~BCI (g.g)

c.

Ta có tam giác BEH~BCI

=> \(\dfrac{BE}{BC}=\dfrac{BH}{BI}\Rightarrow BE.BI=BC.BH\) (1)

Ta có: \(\dfrac{CB}{BH}=\dfrac{CH}{BH}\Rightarrow CB.BH=BH.CH\) (2)

Từ (1) và (2) cộng vế theo vế ta được:

\(BE.BI+CB.BH=CB.BH+CB.CH\)

\(\Rightarrow BE.BI+BC.CH=BC\left(BH+CH\right)\)

\(\Rightarrow BE.BI+CB.CH=BC^2\)

2 tháng 2 2021

Bổ sung hình vẽ

12 tháng 5 2018

a)  Xét  \(\Delta ABC\)và    \(\Delta HBA\)có:

         \(\widehat{B}\) chung

        \(\widehat{BAC}=\widehat{BHA}=90^0\)

suy ra:    \(\Delta ABC~\Delta HBA\)  (g.g)

b)  Xét   \(\Delta AIH\)và     \(\Delta AHB\)có:

        \(\widehat{AIH}=\widehat{AHB}=90^0\)

        \(\widehat{IAH}\)  chung

suy ra:    \(\Delta AIH~\Delta AHB\) (g.g)

\(\Rightarrow\)\(\frac{AI}{AH}=\frac{AH}{AB}\)  \(\Rightarrow\)  \(AI.AB=AH^2\)  (1)

Xét    \(\Delta AHK\)và     \(\Delta ACH\)có:

    \(\widehat{HAK}\)chung

   \(\widehat{AKH}=\widehat{AHC}=90^0\)

suy ra:   \(\Delta AHK~\Delta ACH\)  (g.g)

\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AK}{AH}\)

\(\Rightarrow\)\(AK.AC=AH^2\)    (2)

Từ (1) và (2) suy ra:    \(AI.AB=AK.AC\)

c)   \(S_{ABC}=\frac{1}{2}.AH.BC=20\)cm2

Tứ giác  \(HIAK\)có:     \(\widehat{HIA}=\widehat{IAK}=\widehat{AKH}=90^0\)

\(\Rightarrow\)\(HIAK\)là hình chữ nhật

\(\Rightarrow\)\(AH=IK=4\)cm

Ta có:   \(AI.AB=AK.AC\) (câu b)

 \(\Rightarrow\)\(\frac{AI}{AC}=\frac{AK}{AB}\)

Xét    \(\Delta AIK\)và    \(\Delta ACB\)có:

    \(\widehat{IAK}\)chung

   \(\frac{AI}{AC}=\frac{AK}{AB}\) (cmt)

suy ra:   \(\Delta AIK~\Delta ACB\)  (c.g.c)

\(\Rightarrow\)\(\frac{S_{AIK}}{S_{ACB}}=\left(\frac{IK}{BC}\right)^2=\frac{4}{25}\)

\(\Rightarrow\)\(S_{AIK}=\frac{4}{25}.S_{ACB}=3,2\)cm2

Bài 1: Cho tam giác ABC cân tại A có M, N, H lần lượt là trung điểm của AB, AC, BC. a) Chứng minh tứ giác BMNC là hình thang cân. b) Gọi K là điểm đối xứng với H qua N. Chứng minh tứ giác AHCK là hình chữ nhật c) Chứng minh tứ giác AMHN là hình thoi d) Kẻ HE\(\perp\)AC (E \(\in\) AC). Gọi I là trung điểm của HE. Chứng minh AI\(\perp\)BE Bài 2: Cho tam giác ABC vuông tại A, AH là đường cao. Vẽ HD\(\perp AB\)...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có M, N, H lần lượt là trung điểm của AB, AC, BC.

a) Chứng minh tứ giác BMNC là hình thang cân.

b) Gọi K là điểm đối xứng với H qua N. Chứng minh tứ giác AHCK là hình chữ nhật

c) Chứng minh tứ giác AMHN là hình thoi

d) Kẻ HE\(\perp\)AC (E \(\in\) AC). Gọi I là trung điểm của HE. Chứng minh AI\(\perp\)BE

Bài 2: Cho tam giác ABC vuông tại A, AH là đường cao. Vẽ HD\(\perp AB\) tại D, HE\(\perp\)AC tại E

a) Tứ giác ADHE là hình gì?

b) Chứng minh rằng: AH\(^2\)= BH.HC; AB\(^2\)=BH.BC

Bài 3: Cho tam giác ABC vuông tại A. D,E lần lượt là trung điểm của AB và BC

a) Chứng minh rằng: ADEC là hình thang vuông

b) Gọi F là điểm đối xứng của E qua D. Tứ giác AFEC là hình gì? Vì sao?

c) Gọi M,K là giao điểm của CF với AE, AB. N là giao điểm của DM với AC. Chứng minh rằng: ADEN là hình chữ nhật

d) Chứng minh rằng AB=6DK

0
21 tháng 10 2019

con chó sì ta poi vn chơi freefire

21 tháng 10 2019

A C B H I D K

\(a.Xét\Delta ABDvà\Delta KBDcó:\)

\(BÂD\)\(=\widehat{BKD}\)\(\left(=90^O\right)\)

\(BD:cạnhchung\)

\(\widehat{ABD}=\widehat{KBD}\)

\(\Rightarrow\Delta ABD=\Delta KBD\)( cạnh huyền - góc nhọn )

\(c.Tacó:IH\perp BC;DK\perp BC\Rightarrow IH//DK\)

15 tháng 3 2019

Bài 5:

Áp dụng BĐT Svacxơ:

\(P=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{3}=3\)

Vậy Pmin=3\(\Leftrightarrow a=b=c=1\)

2 tháng 4 2021

A B C D F E H I M N

a, Xét tam giác AFH và tam giác ADB ta có : 

^AFH = ^ADB = 900

^A _ chung 

Vậy tam giác AFH ~ tam giác ADB ( g.g )

b, Xét tam giác EHC và tam giác FHB ta có : 

^EHC = ^FHB ( đối đỉnh )

^CEH = ^BFH = 900

Vậy tam giác EHC ~ tam giác FHB ( g.g )

\(\Rightarrow\frac{EH}{FH}=\frac{HC}{HB}\Rightarrow EH.HB=HC.FH\)

c, 

2 tháng 4 2021

A B C D H E I P O M N