Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(\frac{12}{3n-1}\) là số nguyên thì \(12⋮3n-1\)
Mà \(Ư\left(12\right)\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Hay \(3n-1\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Với điều kiện \(n\inℤ\) ; Ta có bảng sau:
3n - 1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
n | \(\frac{-11}{3}\) | \(\frac{-5}{3}\) | \(-1\) | \(\frac{-2}{3}\) | \(\frac{-1}{3}\) | \(0\) | \(\frac{2}{3}\) | \(1\) | \(\frac{4}{3}\) | \(\frac{5}{3}\) | \(\frac{7}{3}\) | \(\frac{13}{3}\) |
ĐCĐK | loại | loại | TM | loại | loại | TM | loại | TM | loại | loại | loại | loại |
Vậy \(n\in\left\{-1;0;1\right\}\)
b) Để \(\frac{2n+3}{7}\)là số nguyên thì \(2n+3⋮7\)
Mà \(B\left(7\right)\in\left\{\pm7;\pm14;\pm21;\pm28;\pm35;\pm42;\pm49;\pm56;\pm63;\pm70;\pm77;...\right\}\)
Hay \(2n+3\in\left\{\pm7;\pm14;\pm21;\pm28;\pm35;\pm42;\pm49;\pm56;\pm63;\pm70;\pm77;...\right\}\)
Với điều kiện \(n\inℤ\) ; Ta có bảng sau:
2n + 3 | -35 | -28 | -21 | -14 | -7 | 7 | 14 | 21 | 28 | 35 | ... |
n | \(-19\) | \(\frac{-31}{2}\) | \(-12\) | \(\frac{-17}{2}\) | \(-5\) | \(2\) | \(\frac{11}{2}\) | \(9\) | \(\frac{25}{2}\) | \(16\) | ... |
ĐCĐK | TM | loại | TM | loại | TM | TM | loại | TM | loại | TM | ... |
Vậy \(n\in\left\{-19;-12;-5;2;9;16;...\right\}\)
c) Mik chx lm đc, sr, bn thông cảm!
Vì máy tính mình k đánh đc công thức toán nên dấu chia là dấu chia hết nhé.
Ta có: ( 3n + 5 ) : ( n - 3 )
n - 3 : n - 3 => 3( n - 3 ) : n - 3 => 3n - 9 : n -3
=> ( 3n + 5 ) - ( 3n - 9 ) : n - 3
=> 3n + 5 - 3n + 9 : n - 3
=> 14 : n - 3 => n - 3 \(\varepsilon\)Ư(14) = { 1; 2; 7; 14 }
Ta có bảng sau:
x-3 | x |
1 | 4 |
2 | 5 |
7 | 10 |
14 | 17 |
Vậy, x\(\varepsilon\){ 4; 5; 10; 17 }
TL ;
A = { x E N / 0 ;1 ; 2 ; 3 ; 4 ; 5 }
B = { x E N / 0 ; 1 ; 2 ; 3 }
C = { x E N / 0 ; 1 }
D = { x E N / 0 ; x ; y }
Chúc bạn học tốt nhé !
a) Gọi ƯCLN(n + 3;n + 4) = d
=> \hept{n+3⋮dn+4⋮d⇒n+4−(n+3)⋮d⇒1⋮d⇒d=1\hept{n+3⋮dn+4⋮d⇒n+4−(n+3)⋮d⇒1⋮d⇒d=1
=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau
=> n+3n+4n+3n+4là phân số tối giản
b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d
Ta có : \hept{3n+3⋮d9n+8⋮d⇒\hept⎧⎨⎩3(3n+3)⋮d9n+8⋮d⇒\hept{9n+9⋮d9n+8⋮d⇒9n+9−(9n+8)⋮d⇒1⋮d⇒d=1\hept{3n+3⋮d9n+8⋮d⇒\hept{3(3n+3)⋮d9n+8⋮d⇒\hept{9n+9⋮d9n+8⋮d⇒9n+9−(9n+8)⋮d⇒1⋮d⇒d=1
=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau
=> 3n+39n+83n+39n+8phân số tối giản
a) Gọi ƯCLN(n + 3;n + 4) = d
=> \hept{n+3⋮dn+4⋮d⇒n+4−(n+3)⋮d⇒1⋮d⇒d=1\hept{n+3⋮dn+4⋮d⇒n+4−(n+3)⋮d⇒1⋮d⇒d=1
=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau
=> n+3n+4n+3n+4là phân số tối giản
b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d
Ta có : \hept{3n+3⋮d9n+8⋮d⇒\hept⎧⎨⎩3(3n+3)⋮d9n+8⋮d⇒\hept{9n+9⋮d9n+8⋮d⇒9n+9−(9n+8)⋮d⇒1⋮d⇒d=1\hept{3n+3⋮d9n+8⋮d⇒\hept{3(3n+3)⋮d9n+8⋮d⇒\hept{9n+9⋮d9n+8⋮d⇒9n+9−(9n+8)⋮d⇒1⋮d⇒d=1
=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau
=> 3n+39n+83n+39n+8phân số tối giản
Lời giải:
$3n+6\vdots n-1$
$\Rightarrow 3(n-1)+9\vdots n-1$
$\Rightarrow 9\vdots n-1$
$\Rightarrow n-1\in\left\{\pm 1; \pm 3; \pm 9\right\}$
$\Rightarrow n\in\left\{0; 2; -2; 4; 10; -8\right\}$
Vì $n$ là stn nên $n\in\left\{0; 2; 4; 10\right\}$