Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2-4x+1+9y^2-6y+1+16z^2-8z+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(3y-1\right)^2+\left(4z-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\x=\frac{1}{4}\end{cases}}\)
vay ................................................
Ta có :
4x2 + 9y2 + 16z2 - 4x - 6y - 8z + 3 = 0
( 2x ) 2 + ( 3y)2 + ( 4z)2 - 4x - 6y - 8z + 3 = 0
\([\left(2x\right)^2-2.2x+1]+[\left(3y\right)^2-2.3y+1]+[\left(4z\right)^2-2.4z+1]=0\)=0
( 2x-1)2 + ( 3y -1 )2 + ( 4z - 1) 2 = 0
Mà ( 2x-1)2 \(\ge\)0 với mọi x
( 3y-1 )2 \(\ge0\)với mọi y
( 4z - 1) 2 \(\ge0\)với mọi z
nên \(\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\z=\frac{1}{4}\end{cases}}}\)
Vậy x = 1/2 ; y = 1/3 ; z = 1/4
Bài này chị chắc chắn là thiếu đề.
Cho \(x=y=z=0\Rightarrow xy+yz+xz=0\)
Cho \(x=0,y=\frac{\sqrt{0,5}+1}{3},z=\frac{\sqrt{1,5}+1}{4}\Rightarrow xy+yz+xz=0,316...\)
Nghĩa là có vô số giá trị của $xy+yz+xz$
Còn ý tưởng của em có lẽ đúng rồi. Hầu như luôn đưa về tổng bình phương và dùng BĐT để đánh giá.
\(4x^2+9y^2+16z^2-4x-6y-8z=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(9y^2-6y+1\right)+\left(16z^2-8z+1\right)-3=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(3y-1\right)^2+\left(4z-1\right)^2-3=0\)
Akai Haruma, em tách thế này, xong đến đây là "ngậm" luôn @@ em không biết làm thế nào cả ạ ==' hay là bấm máy tính pt bậc 2 ạ ??
a) \(x^2-8x+y^2+6y+25=0\)
\(\left(x-8\right)x+y\left(y+6\right)+25=0\)
\(x^2+y^2+6y+25=8x\)
\(\Rightarrow x=4,y=-3\)
b ) 4x2-4x+9y2 -12y +5
<=> [( 2x )2 - 4x + 1 ] [ (3y) 2 - 12y + 4 )] = 0
<=> ( 2x - 1 )2 + ( 3y - 2 )2 =0 ( Vì (2x -1)2 >=0 , ( 3y - 2 )2 >= 0 )
<=> 2x - 1 = 0 và 3y -2 = 0
<=> x = 1/2 và y = 2/3
2 a) x2 + 4x + 5
= x2 + 2.x.2 + 22 + 1
=(x + 2)2 +1
vì (x + 2)2 lớn hơn hoặc bằng 0 với mọi x
suy ra A luôn lớn hơn hoặc bằng 1
dấu '=' xảy ra khi x+2=0 suy ra x=-2
vậy GTNN của A là 1 khi x= -2
b)x2 + y2 - 4x +6y +13=0
(x2 - 4x +4)+(y2 + 6y +9)=0
(x-2)2 + (y+3)2 =0
vì (x - 2)2 lớn hơn hoặc bằng 0 với mọi x
(y+3)2 lớn hơn hoặc bằng 0 với mọi y
nên để (x-2)2 + (y+3)2 =0
thì x-2=0 và y+3=0
x=2; y= -3
\(4x^2-4x+9y^2-6y+16z^2-8z+3=0\)
\(\left(4x^2-4x+1\right)+\left(9y^2-6y+1\right)+\left(16z^2-8y+1\right)=0\)
\(\left(2x-1\right)^2+\left(3y-1\right)^2+\left(4z-1\right)^2=0\)
\(=>\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y-1\right)^2=0\\\left(4z-1\right)^2=0\end{cases}=>\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}=>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\z=\frac{1}{4}\end{cases}}}}\)
Vậy...