K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2016

Ta có

\(\left(x-y\right)^2\ge0\)

\(\Rightarrow x^2-2xy+y^2\ge0\)

\(\Rightarrow x^2+y^2\ge2xy\)

\(\Rightarrow x^2+y^2+x^2+y^2\ge x^2+y^2+2xy\)

\(\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Rightarrow x^2+y^2\ge2\)

Dấu " = " xay ra khi x=y=1

Vậy MINS=2 khi x=y=1

16 tháng 9 2020

Ta có : \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{2^2}{2}=2\)

\(\Rightarrow4\left(x^2+y^2\right)\ge8\)

Lại có : \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}=\frac{4}{2^2}=1\)

Do đó : \(P=4\left(x^2+y^2\right)+\frac{1}{xy}\ge8+1=9\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)

Câu 1: Cho x; y > 0 thỏa mãn x + y ≤ 1. Giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^2+y^2}+\frac{5}{xy}\)  là: .......Câu 2: Số nghiệm của phương trình x4 + x3 = -x3 + x + 2 là: .......Câu 3: Cho biểu thức \(A=\frac{x+16}{\sqrt{x}+3}\)Giá trị nhỏ nhất của biểu thức A bằng  ........Câu 4: Cho 2 số dương x; y thỏa mãn x + y = 2.Giá trị lớn nhất của B = 2xy(x2 + y2) là: ...........Câu 5: Nghiệm của phương...
Đọc tiếp

Câu 1: Cho x; y > 0 thỏa mãn x + y ≤ 1. Giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^2+y^2}+\frac{5}{xy}\)  là: .......

Câu 2: Số nghiệm của phương trình x4 + x3 = -x3 + x + 2 là: .......

Câu 3: Cho biểu thức \(A=\frac{x+16}{\sqrt{x}+3}\)
Giá trị nhỏ nhất của biểu thức A bằng  ........

Câu 4: Cho 2 số dương x; y thỏa mãn x + y = 2.
Giá trị lớn nhất của B = 2xy(x2 + y2) là: ...........

Câu 5: Nghiệm của phương trình\(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)là x = .............

Câu 6: Đa thức dư trong phép chia đa thức x + x3 + x9 + x27 + x81 + x243 cho đa thức (x2 - 1) là ax + b.
Khi đó a + b = .......

Câu 7: Cho x, y thuộc N* thỏa mãn x + y = 11.
Giá trị lớn nhất của biểu thức A = xy là:

Câu 8: Số giá trị của a để hệ xy+x+y=a+1 và x2y+ y2x có nghiệm duy nhất là:

Câu 9: Viết số 19951995 dưới dạng 19951995 = a+ a+ a+ ...... + an.
Khi đó a12 + a22 + a32 + ...... + anchia cho 6 thì có số dư là ............

0
18 tháng 2 2020

Ta có :

\(B+8=xy+yz+2zx+x^2+y^2+z^2\)

\(=\left(x+z+\frac{y}{2}\right)^2+\frac{3}{4}y^2\ge0\)

Do đó : \(B\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x^2=z^2=4\end{cases}}\)

21 tháng 2 2020

 ミ★ Đạt ★彡 làm đúng rồi nha.

Nhưng đoạn cuối bạn cần bổ sung là khi y = 0; x= -2 thì z=2 hoặc khi x=2 ;z=-2;y=0.

(x;z phải ngược dấu nha)

12 tháng 4 2018

căng nha

11 tháng 12 2018

\(P=x^{2}+y^{2}+\frac{1}{(4-\frac{1}{x}-\frac{1}{y})^{2}}\geq x^{2}+1+\frac{1}{(3-\frac{1}{x})^{2}}=x^{2}+1+\frac{x^{2}}{(3x-1)^{2}}\) ( do \(y\geq 1)\)

\(x> \frac{1}{3}=>3x-1> 0 \)

Áp dụng bất đẳng thức Cô-si cho 2 số dương: 

\(x^{2}+\frac{x^{2}}{4(3x-1)^{2}}\geq 2\sqrt{x^{2}.\frac{x^{2}}{4(3x-1)^{2}}}=\frac{x^{2}}{3x-1}\)

Ta cm: \(\frac{x^{2}}{3x-1}\geq \frac{1}{2}<=>2x^{2}\geq 3x-1<=>(x-1)(2x-1)\geq 0\) đúng do \(\frac{1}{3}< x\leq \frac{1}{2}\)

\(1+\frac{3x^{2}}{4(3x-1)^{2}}=\frac{1}{4}+\frac{3}{4}(1+\frac{x^{2}}{(3x-1)^{2}})\geq \frac{1}{4}+\frac{3}{4}.2.\frac{x}{3x-1}\geq \frac{1}{4}+\frac{3}{4}.2=\frac{7}{4}\)

Do \(\frac{x}{3x-1}=\frac{1}{3}.\frac{3x}{3x-1}=\frac{1}{3}(1+\frac{1}{3x-1})\geq \frac{1}{3}(1+\frac{1}{\frac{3}{2}-1})=1\)

\(<=>y=1,x=\frac{1}{2}\)

Phù ~ THỞ PHÀO NHẸ NHÕM

15 tháng 2 2020

Dễ thấy P>0. Ta có: \(P^2-\frac{8}{9}=\frac{\left(x-y\right)^2\left(x^2+4xy+y^2\right)}{9\left(xy+1\right)^2}\)

Suy ra \(P\ge\frac{2\sqrt{2}}{3}\). Đẳng thức xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)

P/s: Phân tích trên chỉ đúng khi \(x^2+y^2=1\) :))