\(\sqrt{3}\)  cos3x =2cos5x

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

Có b nào gipus mk với cần gấp gấp :)

9 tháng 7 2017

Ta có \(\sqrt{3}\)cos3x - sin3x = 2sin(3x+\(\dfrac{2\Pi}{3}\))
Do đó phương trình đã cho \(\Leftrightarrow\) sin(3x+\(\dfrac{2\Pi}{3}\)) = sinx
\(\Leftrightarrow\) 3x +\(\dfrac{2\Pi}{3}\)= x + k2\(\Pi\) hoặc 3x + \(\dfrac{2\Pi}{3}\)= \(\Pi\)-x +k2\(\Pi\) (k\(\in\)Z) Mình làm biếng bấm tiếp quá

13 tháng 7 2017

cảm ơn bạnhaha

b: \(\Leftrightarrow2\cdot\cos2x\cdot\cos x+2\cdot\sin x\cdot\cos2x=\sqrt{2}\cdot\cos2x\)

\(\Leftrightarrow2\cdot\cos2x\left(\sin x+\cos x\right)=\sqrt{2}\cdot\cos2x\)

\(\Leftrightarrow\sqrt{2}\cdot\cos2x\cdot\left[\sqrt{2}\cdot\sqrt{2}\cdot\sin\left(x+\dfrac{\Pi}{4}\right)-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\cos2x=0\\\sin\left(x+\dfrac{\Pi}{4}\right)=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\Pi}{2}+k\Pi\\x+\dfrac{\Pi}{4}=\dfrac{\Pi}{6}+k2\Pi\\x+\dfrac{\Pi}{4}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\)

\(\Leftrightarrow x\in\left\{\dfrac{\Pi}{4}+\dfrac{k\Pi}{2};\dfrac{-1}{12}\Pi+k2\Pi;\dfrac{7}{12}\Pi+k2\Pi\right\}\)

c: \(\Leftrightarrow2\cdot\sin2x\cdot\cos x+\sin2x=2\cdot\cos2x\cdot\cos x+\cos2x\)

\(\Leftrightarrow\sin2x\left(2\cos x+1\right)=\cos2x\left(2\cos x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\cos2x=\sin\left(\dfrac{\Pi}{2}-2x\right)\\\cos x=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\\\\x=-\dfrac{2}{3}\Pi+k2\Pi\\x=\dfrac{2}{3}\Pi+k2\Pi\end{matrix}\right.\)

NV
19 tháng 10 2020

ĐKXĐ: ..

\(\frac{sin3x+sinx+sin2x}{cos3x+cosx+cos2x}=\sqrt{3}\)

\(\Leftrightarrow\frac{2sin2x.cosx+sin2x}{2cos2x.cosx+cos2x}=\sqrt{3}\)

\(\Leftrightarrow\frac{sin2x\left(2cosx+1\right)}{cos2x\left(2cosx+1\right)}=\sqrt{3}\)

\(\Leftrightarrow tan2x=\sqrt{3}\)

\(\Leftrightarrow x=\frac{\pi}{6}+\frac{k\pi}{2}\)

NV
1 tháng 9 2020

\(\Leftrightarrow\sqrt{3}sin3x-cos3x=2sin2x\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin3x-\frac{1}{2}cos3x=sin2x\)

\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=2x+k2\pi\\3x-\frac{\pi}{6}=\pi-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{30}+\frac{k2\pi}{5}\end{matrix}\right.\)

24 tháng 8 2020

\(sin3x+\sqrt{3}cos3x=2sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2}sin3x+\frac{\sqrt{3}}{2}cos3x\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow x\in R\)

NV
26 tháng 7 2020

c/

\(\Leftrightarrow\sqrt{3}sin3x-cos3x=sin2x-\sqrt{3}cos2x\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin3x-\frac{1}{2}cos3x=\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\)

\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=sin\left(2x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=2x-\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{6}=\pi-2x+\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)

NV
26 tháng 7 2020

e/

\(\Leftrightarrow\frac{1}{2}sin8x-\frac{\sqrt{3}}{2}cos8x=\frac{\sqrt{3}}{2}sin6x+\frac{1}{2}cos6x\)

\(\Leftrightarrow sin\left(8x-\frac{\pi}{3}\right)=sin\left(6x+\frac{\pi}{6}\right)\)

\(\Rightarrow\left[{}\begin{matrix}8x-\frac{\pi}{3}=6x+\frac{\pi}{6}+k2\pi\\8x-\frac{\pi}{3}=\pi-6x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{28}+\frac{k\pi}{7}\end{matrix}\right.\)

23 tháng 10 2020

Hình như câu này tui từng đi hỏi anh Lâm thì phải :D

\(\sin3x+\cos3x=3\sin x-4\sin^3x+4\cos^3x-3\cos x\)

\(=3\left(\sin x-\cos x\right)-4\left(\sin x-\cos x\right)\left(\sin^2x+\sin x\cos x+\cos^2x\right)=\left(\cos x-\sin x\right)\left(4\sin x\cos x+1\right)=\left(\cos x-\sin x\right)\left(1+2\sin2x\right)\)

\(\Leftrightarrow\sqrt{3}\cos x=\sin x\Leftrightarrow\sin\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)

Bạn tự giải nốt, nhớ đối chiếu đkxd nhó