Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: MQ=MR=QR/2=12cm
=>PM=5cm
\(S=\dfrac{5\cdot24}{2}=5\cdot12=60\left(cm^2\right)\)
b: Xét tứ giác PMQK có
O là trung điểm chung của PQ và MK
góc PMQ=90 độ
Do đó: PMQK là hình chữ nhật
c: Để PMQK là hình vuông thì PM=MQ=QR/2
=>ΔPQR vuông tại P
=>góc QPR=90 độ
a) dien h tam giac ABC la :S ABC =1/2 AB * AC = 1/2* 6 *8 = 24(m2)
b) Tu giac AIHK co :
goc AIH = goc HKA = goc KAI = 90 do
suy ra AIKH la hinh chu nhat
c)Tu giac AHMD co :
AK = KM
KH=KD
suy ra AHMD la hinh binh hanh
ma goc HKC = 90 do
suy ra AHMD la hinh thoi
c) Trong tam AHC vuong tai H co :
KH la trung tuyen
suy ra KH = 1/2 AC
Chung minh tuong tu ta co : HI = 1/2 AB
De IHKA la hinh vuong thi IH = HK
ma IH = 1/2 AB
KH = 1/2 AC
suy ra AB = AC
suy ra tam giac ABC can
ma tam giac ABC vuong(gt)
suy ra tam giac ABC vuong can
Vay tam giac ABC vuong can thi AIHK la hinh vuong
a, Ta cs : \(\hept{\begin{cases}MI//QK\\MI=QK\end{cases}}\)
=> Tứ giác MIKQ là hình bình hành
Ta lại cs : MI = MQ
=> Tứ giác MIKQ là hình thoi
a: Xét ΔQOP có QM/QO=QK/QP
nênMK//OP và MK=OP/2
=>MK//OI và MK=OI
=>OIKM là hình bình hành
mầ góc MOI=90 độ
nên OIKM là hình chữ nhật
b: Để OIKM là hình vuông thì OI=OM
=>OP=OQ
c: \(S_{OPQ}=\dfrac{1}{2}\cdot10\cdot15=75\left(cm^2\right)\)
\(S_{OIKM}=5\cdot7.5=37.5\left(cm^2\right)\)
Sửa đề: MK\(\perp\)PQ; MN\(\perp\)PR
a: ta có: ΔPQR vuông tại P
=>\(QR^2=PQ^2+PR^2\)
=>\(QR^2=8^2+6^2=100\)
=>\(QR=\sqrt{100}=10\left(cm\right)\)
Ta có: ΔRPQ vuông tại P
mà PM là đường trung tuyến
nên \(PM=\dfrac{RQ}{2}=5\left(cm\right)\)
b: Xét tứ giác PNMK có
\(\widehat{PNM}=\widehat{PKM}=\widehat{NPK}=90^0\)
=>PNMK là hình chữ nhật
c: Xét ΔRPQ có
M là trung điểm của RQ
MK//RP
Do đó: K là trung điểm của PQ
=>PK=KQ(1)
Ta có: PKMN là hình chữ nhật
=>PK=MN(2)
Từ (1) và (2) suy ra KQ=MN
Ta có: PK//MN
K\(\in\)PQ
Do đó: NM//KQ
Xét tứ giác KQMN có
KQ//MN
KQ=MN
Do đó: KQMN là hình bình hành
=>QN cắt MK tại trung điểm của mỗi đường
mà O là trung điểm của MK
nên O là trung điểm của QN
=>OQ=ON
Xét tứ giác PMQH có
K là trung điểm chung của PQ và MN
=>PMQH là hình bình hành
Hình bình hành PMQH có PQ\(\perp\)MH
nên PMQH là hình thoi