Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a) Dễ mà
Câu b) Hiệu hai số nguyên tố k thể là 2013. Vì
Giả sử có hai số nguyên tố \(a-b=2013\)
Suy ra: a,b là số lẻ (Không đc vì a-b phải là số chẵn)
Hoặc: \(\orbr{\begin{cases}a=2\\b=2\end{cases}\Rightarrow\orbr{\begin{cases}b=2015\\a=2015\end{cases}}}\)(không thỏa vì 2015 không phải là số nguyên tố)
Suy ra phản giả thiết
Vậy không tồn tại hai số nguyên tố sao cho tổng = 2013
a) Ta xét:S=3+3^(2+1)+3^(2+3)+...+3^(2+1009)+3^(2+1011)+3^(2+1013)
S=3+9(3+3^3+...+3^1009+3^1011+3^1013) ko chia hết cho 9
s ko chia het 70 minh ko bit
b) gọi 2 số nguyên tố là a,b Giả sử:a-b=2013
vì 2013 là số lẻ => 1 trong 2 số a,b là chẵn mà a,b nguyên tố => 1 trong 2 số a,b =2
Nếu a=2=>2-b=2013=>b=-2011ko là số nguyên tố
Nếu b=2 => a-2=2013 => a= 2015 ko số nguyên tô
Do vậy giả sử sai=> hiệu 2 số nguyên tố ko bằng 2013
a) 3 ko chia hết cho 9
các hạng tử còn lại thì chia hết cho 9
vậy S ko chia hết cho 9
b) có 1008 số hạng
có thể chia làm 1008:3=336(nhóm)
Chia 3 vì tổng chia hết cho 70
bạn tự làm tiếp nhé ko thì gửi tin mk giải tiếp cho
a)\(3^3+3^5+...+3^{2013}+3^{2015}\) chia hết cho 9
3 không chia hết cho 9 ⇒ S không chia hết cho 9
S = 3.(1 + \(3^2\) + \(3^4\) ) + ... + \(3^{2011}\) (1 + \(3^2\) + \(3^4\) ) (Do S có 1008 số hạng)
S = 3. 91 + ... + \(3^{2011}\).91
S chia hết cho 91 nên S chia hết cho 7 (91 = 7.13)
S = 3(1 + \(3^2\)) + ... + \(3^{2013}\) (1 + \(3^2\) ) (Do S có 1008 số hạng)
S = 3. 10 + ... + \(3^{2011}\).10
S chia hết cho 10. Do (7,10) =1 nên S chia hết cho 7.10 = 70
Ta có: 4n-5 chia hết cho 2n-1
Mà 2(2n-1) chia hết cho 2n-1
hay 4n-2 chia hết cho 2n-1
Nên 4n-5-(4n-2) chia hết cho 2n-1
hay 4n-5-4n+2 chia hết cho 2n-1
-3 chia hết cho 2n-1
=> 2n-1 thuộc Ư(-3)={1;-1;3;-3}
Ta có bảng:
2n-1 1 -1 3 -3
n 1 0 2 -1(loại vì n thuộc N)
Vậy n ={1;0;2}
1. Đặt P là thương:
\(P=\frac{4n-5}{2n-1}\)
\(\Leftrightarrow P=\frac{4n-2-3}{2n-1}\)
\(\Leftrightarrow P=2-\frac{3}{2n-1}\)
P thuộc Z khi và chỉ khi: 2n-1 là ước của 3.
TH1: \(
2n-1=-1\)
\(\Leftrightarrow n=0\)
TH2: \(2n-1=-3
\)
\(\Rightarrow n=-1\) (Loại do n tự nhiên)
TH3: \(2n-1=1
\)
\(\Rightarrow n=1\)
TH4: \(2n-1=3\)
\(\Rightarrow n=2\)
Vậy có ba giá trị của n tự nhiên là 0; 1; 2.
\(S=3^1+3^3+3^3\left(3^2+3^4\right)+3^7\left(3^2+3^4\right)+...+3^{2011}\left(3^2+3^4\right)\)
\(=28+3^3.90+3^7.90+...+3^{2011}.90\)ko chia hết cho 9
2 ) vì p là số nguyên tố nên sẽ có các trường hợp :
trường hợp 1 : xét p = 2
ta có : p +2 = 2 + 2 = 4 (loại)
p+10=2+10=12 (loại)
trường hợp 2 : xét p = 3
ta có: p+2=2+3=5 (t/m)
p+10=3+10=13 (t/m)
trường hợp 3 : nếu p > 3 thì p sẽ nhận thêm 2 trường hợp 3k+1 và 3k+2
+ Nếu p = 3k+1
ta có : p+2=3k+1+2=3k+3 chia hết cho 3 ( là hợp số , loại)
+ nếu p = 3k+2
ta có : p+10=3k+2+10=3k+12 chia hết cho 3 (là hợp số , loại)
VẬY SỐ NGUYÊN TỐ P THÕA MÃN LÀ 3