Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+24x+19=0\)
\(\Leftrightarrow5x^2+5x+19x+19=0\)
\(\Leftrightarrow5x\left(x+1\right)+19\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(5x+19\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\5x+19=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\frac{19}{5}\end{cases}}\)
Vậy \(S=\left\{-1;-\frac{19}{5}\right\}\)
Tìm nghiệm của phương trình
5x^2 + 24x + 19 = 0
5x^2 + 5x + 19x + 19 = 0
5x(x+1 ) ( 5x + 19 ) = 0
x + 1 = 0
5x + 19 = 0
x = -1
x = -19/5
vậy S = { -1 ; -19/5 }
giải phương trình :
- x2 – 3x + 2 + |x – 1| = 0
1)Nếu x-1 >= 0 thì x>=1
=>x2 – 3x + 2 + |x – 1| = 0
<=>x2-3x+2+x-1=0
<=>x2-2x+1=0
<=>(x-1)2=0
<=>x-1=0
<=>x=1
Vậy S={1}
2 ) ĐKXĐ:
x(x-2)≠0
<=>x≠0 và x-2≠0
<=>x≠0 và x≠2
\(\frac{x+2}{x-2}-\frac{1}{x}-\frac{2}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}-\frac{2}{x\left(x-2\right)}=0\)
=>x(x+2)-(x-2)-2=0
<=>x2+2x-x+2-2=0
<=>x2+x=0
<=>x(x+1)=0
<=>x=0 (ko thỏa ĐKXĐ) hoặc x+1=0
<=>x=-1
Vậy S={-1}
a. \(\sqrt{4x}+\sqrt{x}=2\Leftrightarrow2\sqrt{x}+\sqrt{x}=2\Leftrightarrow3\sqrt{x}=2\Leftrightarrow\sqrt{x}=\frac{2}{3}\Leftrightarrow x=\frac{4}{9}\)
b. \(\sqrt{x^2-4}=\sqrt{x-2}\Leftrightarrow\hept{\begin{cases}x^2-4=x-2\\x-2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x=2\\x=-1\end{cases}}\\x\ge2\end{cases}}\Leftrightarrow x=2\)\(\sqrt{x^2-4}=\sqrt{x-2}\Leftrightarrow\hept{\begin{cases}x^2-4=x-2\\x-2\ge2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)\left(x+1\right)=0\\x\ge2\end{cases}}\Leftrightarrow x=2\)
c.\(\sqrt{x^2-2x}+\sqrt{2x^2+4x}=2x\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2-2x+2x^2+4x+2\sqrt{x^2-2x}.\sqrt{2x^2+4x}=4x^2\end{cases}}\)
\(\Rightarrow x^2-2x=2\sqrt{x^2-2x}.\sqrt{2x^2+4x}\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-2x}=0\\\sqrt{x^2-2x}=2\sqrt{2x^2+4x}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\text{ hoặc }x=2\\x^2-2x=8x^2+16x\end{cases}\Leftrightarrow}\)hoặc x=0 hoặc x=2 hoặc x= -18/7
Kết hợp điều kiện ta có : \(x=0\text{ hoặc }x=2\)
d. Điều kiện \(x\ge3\) ta có :
\(\sqrt{x^2+2x-15}=\sqrt{x-3}+\sqrt{x^2-3x}\Leftrightarrow x^2+2x-15=x^2-2x-3+2\sqrt{x-3}\sqrt{x^2-3x}\)
\(\Leftrightarrow2x-6=\sqrt{x-3}.\sqrt{x^2-3x}\Leftrightarrow4\left(x-3\right)^2=\left(x-3\right)\left(x^2-3x\right)\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
a, Để pt trên có 2 nghiệm pb thì \(\Delta>0\)
\(\Delta=4m^2-4m+1+20=\left(2m-1\right)^2+20>0\forall m\)( đpcm )
Câu a: Ta có \(\Delta\)= (1-2m)2-4.1.5= (2m-1)2+20>0 với mọi m
⇒Phương trình luôn có 2 nghiệm phân biệt với mọi m
Câu b:
Để phương trình có 2 nghiệm nguyên thì \(\left\{{}\begin{matrix}\Delta>0\left(luondung\right)\\S\in Z\\P\in Z\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}2m-1\in Z\\-5\in Z\left(tm\right)\end{matrix}\right.\)
\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\frac{\left(x-\sqrt{x}-2\right)-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)\(=\frac{-\sqrt{x}}{\sqrt{x}+1}.\left(x-1\right)=\frac{-x\sqrt{x}+\sqrt{x}}{\sqrt{x}+1}\)
\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\frac{\left(x-\sqrt{x}-2\right)-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)\(=\frac{-\sqrt{x}}{\sqrt{x}+1}.\left(x-1\right)=\frac{-x\sqrt{x}+\sqrt{x}}{\sqrt{x}+1}\)
\(1)\) Để m có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow\left[-2\left(m+1\right)\right]^2-4\left(m^2+3m+2\right)>0\)
\(\Leftrightarrow4\left(m+1\right)^2-4\left(m^2+3m+2\right)>0\)
\(\Leftrightarrow4\left(m^2+2m+1\right)-4\left(m^2+3m+2\right)>0\)
\(\Leftrightarrow4m^2+8m+4-4m^2-12m-8>0\)
\(\Leftrightarrow-4m-4>0\)
\(\Leftrightarrow-4m>4\)
\(\Leftrightarrow m< -1\)
\(2)\) Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+2\\x_1x_2=\dfrac{c}{a}=m^2+3m+2\end{matrix}\right.\)
Ta có :
\(x_1^2+x_2^2=12\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-12=0\)
\(\Leftrightarrow\left(2m+2\right)^2-2\left(m^2+3m+2\right)-12=0\)
\(\Leftrightarrow4m^2+8m+4-2m^2-6m-4-12=0\)
\(\Leftrightarrow2m^2+2m-12=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)
m=2 thì phương trình đâu có nghiêm đâu? Phải loại đi chứ