Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(C=x^3+x^2y-2x^2-x^2y-xy^2+2xy+2y+2x-2\)
\(C=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)
Thay x+y-2 =0 vào C ta được:
\(C=x^2\cdot0-xy\cdot0+2\cdot0+2=2\)
\(C=x^3+x^2y-2x^2-x^2y-xy^2+2xy+2y+2x-2\)
\(=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2y+2x-4\right)+2\)
\(=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)
Thay \(x+y-2=0\)vào biểu thức ta được: \(C=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)
\(M=\left(x^3-y^3\right)+\left(x^2y-xy^2\right)+\left(x^2-y^2\right)+\left(2x+2y+2\right)+1\)
\(M=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y+1\right)+1\)
\(M=\left(x-y\right)\left(x^2+xy+y^2+xy+x+y\right)+2.0+1\)
\(M=\left(x-y\right)\left[\left(x+y\right)^2+\left(x+y\right)\right]+1\)
\(M=\left(x-y\right)\left(x+y\right)\left(x+y+1\right)+1\)
\(M=\left(x-y\right)\left(x+y\right).0+1\)
\(M=1\)
Ở bài này mk áp dụng hằng đẳng thức (a3-b3)=(a-b)(a2+ab+b2) ,(a2-b2)=(a-b)(a+b);(a2+2ab+b2)=(a+b)2
![](https://rs.olm.vn/images/avt/0.png?1311)
a)xy-7x-2y=15
=>x(y-7)-2y=15
=>x(y-7)-2y+14=15+14
=>x(y-7)-2(y-7)=29
=>(x-2)(y-7)=29
=>x-2 và y-7 thuộc Ư(29)={1;-1;29;-29}
Với x-2=1 =>x=3 <=> y-7=29 =>y=36
Với x-2=-1 =>x=1 <=>y-7=-29 =>y=-22
Với x-2=29 =>x=31 <=>y-7=1 =>y=8
Với x-2=-29 =>x=-27 <=>y-7=-1 =>y=6
Vậy .....
b)x2+5x-2xy-10y-11=0
<=>x2+5x-2xy-10y=11
<=>(x2-2xy)+(5x-10y)=11
<=>x(x-2y)+5(x-2y)=11
<=>(x+5)(x-2y)=11
=>x+5 và x-2y thuộc Ư(11)={1;-1;11;-11}
Xét x+5=1 =>x=-4 <=>x-2y=11 <=>-4-2y=11 =>y=\(-7\frac{1}{2}\left(loai\right)\)
Xét x+5=11 =>x=6 <=>x-2y=1 <=>6-2y=1 =>y=\(2\frac{1}{2}\left(loai\right)\)
Xét x+5=-1 =>x=-6 <=>-6-2y=-11 =>y=\(2\frac{1}{2}\left(loai\right)\)
Xét x+5=-11 =>x=-16 <=>-16-2y=-11 =>y=\(-2\frac{1}{2}\left(loai\right)\)
Vậy ko có giá trị x,y nguyên nào thỏa mãn
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề \(\Leftrightarrow x^2-2xy+y^2+y^2+2y+1+x^2+2x+1-x^2+2x-1+12=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y+1\right)^2+\left(x+1\right)^2-\left(x-1\right)^2+12=0\left(1\right)\)
Ta có: \(\left(x-y\right)^2\ge0,\left(y+1\right)^2\ge0,\left(x+1\right)^2\ge0\ge-\left(x-1\right)^2\)
nên \(\left(x-y\right)^2+\left(y+1\right)^2+\left(x+1\right)^2-\left(x-1\right)^2>0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y+1\right)^2+\left(x+1\right)^2-\left(x-1\right)^2+12>12>0\)
\(\Rightarrow\left(1\right)\)vô lí.
Vậy \(S=\varnothing\)