Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
=\(7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
=\(7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
=\(7\left(\frac{1}{10}-\frac{1}{70}\right)\)
=\(7.\frac{3}{35}\)
=\(\frac{3}{5}\)
B=\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
=\(\frac{1}{2}\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
=\(\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
=\(\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)\)
=\(\frac{1}{2}.\frac{2}{75}\)
=\(\frac{1}{75}\)
a,
suy ra A = 7. (1/10.11+1/11.12+1/12.13+.......+1/69.70)
suy ra A = 7. ( 1/10 - 1/11+ 1/11 - 1/12 + 1/12 - 1/13+ ............. + 1/69 - 1/70)
suy ra A = 7. ( 1/ 10 - 1/70)
suy ra A= 7. 3/35
suy ra A= 3/5
B = \(\frac{1}{25}\)- \(\frac{1}{27}\)+ \(\frac{1}{27}\)-\(\frac{1}{29}\)+\(\frac{1}{29}\)-\(\frac{1}{31}\)+... + \(\frac{1}{73}\)-\(\frac{1}{75}\)=
B = \(\frac{1}{25}\)-\(\frac{1}{75}\)
B = \(\frac{2}{75}\)
Ủng hộ mik nha, mk đg âm điểm nè
B = 1/2.(1/25-1/27+1/27-1/29+....+1/73-1/75)
= 1/2.(1/25-1/75)
=1/2.2/75
= 1/75
kik cho mk nhé. đúng đấy. kb luôn
#)Giải :
\(B=\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)
\(2B=\frac{2}{25.27}+\frac{2}{27.29}+...+\frac{2}{73.75}\)
\(2B=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\)
\(2B=\frac{1}{25}-\frac{1}{75}\)
\(2B=\frac{2}{75}\)
\(B=\frac{2}{75}\div2\)
\(B=\frac{1}{75}\)
\(\Rightarrow2A=\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\)
\(\Rightarrow2A=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\)
\(\Rightarrow2A=\frac{1}{25}-\frac{1}{75}=\frac{3}{75}-\frac{1}{75}=\frac{2}{75}\)
\(\Rightarrow A=\frac{2}{75}\div2=\frac{1}{75}\)
\(E=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+...+\frac{1}{73\cdot75}\)
\(E=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(\Rightarrow E=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)=\frac{1}{2}\cdot\frac{2}{75}=\frac{1}{75}\)
\(F=\frac{15}{90\cdot94}+\frac{15}{94\cdot98}+...+\frac{15}{146\cdot150}\)
\(F=\frac{15}{4}\cdot\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(\Rightarrow F=\frac{15}{4}\cdot\left(\frac{1}{90}-\frac{1}{150}\right)=\frac{15}{4}\cdot\frac{1}{225}=\frac{1}{60}\)
\(G=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(G=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(G=\frac{5}{4\cdot7}+\frac{5}{7\cdot10}+\frac{5}{10\cdot13}+...+\frac{5}{25\cdot28}\)
\(G=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(\Rightarrow G=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}\cdot\frac{3}{14}=\frac{5}{14}\)