Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Ta có: \(a^{2000}+b^{2000}=a^{2001}+b^{2001}\)
\(\Rightarrow a^{2001}+b^{2001}\)\(-a^{2000}-b^{2000}=0\)
\(\Rightarrow a^{2000}\left(a-1\right)+b^{2000}\left(b-1\right)=0\)(1)
và \(a^{2001}+b^{2001}=a^{2002}+b^{2002}\)
\(\Rightarrow a^{2002}+b^{2002}\)\(-a^{2001}-b^{2001}=0\)
\(\Rightarrow a^{2001}\left(a-1\right)+b^{2001}\left(b-1\right)=0\)(2)
Lấy (2) - (1), ta được: \(a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2=0\)(3)
Mà \(a^{2000}\left(a-1\right)^2\ge0\forall a\)và \(b^{2000}\left(b-1\right)^2\ge0\forall b\)
nên (3) xảy ra\(\Leftrightarrow\hept{\begin{cases}a^{2000}\left(a-1\right)^2=0\\b^{2000}\left(b-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1hoaca=0\\b=1hoacb=0\end{cases}}\)
Mà a,b dương nên a = 1 và b = 1
a) Áp dụng BĐT Svac - xơ:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=9\)
(Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{3}\))
\(c,\frac{x-a-b}{c}-1+\frac{x-b-c}{a}-1+\frac{x-a-c}{b}-1=0.\)
\(\frac{x-a-b-c}{c}+\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}=0\)
\(\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)
=>\(\orbr{\begin{cases}a+b+c=x\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\end{cases}}\)
Vậy.......
câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)
vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1
suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)
Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
\(a,\frac{15-x}{2000}+\frac{14-x}{2001}=\frac{13-x}{2002}+\frac{12-x}{2003}\)
\(\Leftrightarrow\frac{15-x}{2000}+1+\frac{14-x}{2001}+1=\frac{13-x}{2002}+1+\frac{12-x}{2003}+1\)
\(\Leftrightarrow\frac{15-x+2000}{2000}+\frac{14-x+2001}{2001}=\frac{13-x+2002}{2002}+\frac{12-x+2003}{2003}\)
\(\Leftrightarrow\frac{2015-x}{2000}+\frac{2015-x}{2001}=\frac{2015}{2002}+\frac{2015-x}{2003}\)
\(\Leftrightarrow\left(2015-x\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}>0\)
\(\Leftrightarrow2015-x=0\)
\(\Leftrightarrow x=2015\)
KL : PT có nghiệm \(S=\left\{2015\right\}\)
BĐT Bunhiacopxky em chưa học cô ạ
Cô cong cách nào không ạ
Nguyễn Thị Nguyệt Ánh:
Vậy thì bạn có thể chứng minh $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$ thông qua BĐT Cô-si:
Áp dụng BĐT Cô-si:
$x+y+z\geq 3\sqrt[3]{xyz}$
$xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}$
Nhân theo vế:
$(x+y+z)(xy+yz+xz)\geq 9xyz$
$\Rightarrow \frac{xy+yz+xz}{xyz}\geq \frac{9}{x+y+z}$
hay $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$
Theo mình thì câu 2 là :
a/ b+c + b/c+a + c/a+b =1
suy ra (a+b+c) * (a/ b+c + b/c+a + c/a+b ) = a+b+c
suy ra a*(a+b+c)/(b+c) + b*(a+b+c)/(c+a) + c*(a+b+c)/(a+b) = a+b+c
suy ra a^2+a*(b+c)/b+c +b^2 +b*(c+a)/ c+a +c^2+c*(a+b)/a+b =a=b+c
suy ra a^2/(b+c) +a +b^2/(c+a) +b +c^2/(a+b) +c =a+b+c
suy ra a^2/(b+c) +b^2/(c+a) +c^2/(a+b) =a+b+c -a-b-c
suy ra a^2/(b+c) +b^2/(c+a) +c^2/(a+b) = 0
em moi hoc lop bay
ma bai kho
bo tay .com .vn