Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có (f(x)-20)/(x-2)=10
===>f(x)=10x
thay f(x)=10x vào A và thay
x=2+0,000000001 ta được giới hạn của A= -331259694,9
cái chỗ F(x) =10x đó ,đâu có là sao vậy ạ , tại có thể 10 đó là g(2)=10
\(a=lim\frac{n^2+n}{6n^3}=lim\frac{\frac{1}{n}+\frac{1}{n^3}}{6}=\frac{0}{6}=0\)
\(b=lim\frac{1+\frac{2}{n}}{1+\frac{1}{n}}+lim\frac{sinn}{2^n}=1+0=1\)
Giải thích: \(-1\le sin\left(n\right)\le1\) \(\forall n\Rightarrow\frac{-1}{2^n}\le\frac{sin\left(n\right)}{2^n}\le\frac{1}{2^n}\)
Mà \(lim\frac{-1}{2^n}=lim\frac{1}{2^n}=0\Rightarrow lim\frac{sin\left(n\right)}{2^n}=0\) theo nguyên tắc giới hạn kẹp
\(c=lim\frac{-3n-1}{\sqrt{n^2-3n}+\sqrt{n^2+1}}=lim\frac{-3-\frac{1}{n}}{\sqrt{1-\frac{3}{n}}+\sqrt{1+\frac{1}{n^2}}}=\frac{-3}{1+1}=-\frac{3}{2}\)
\(d=lim\frac{3n^2}{\sqrt[3]{\left(n^3+3n^2\right)^2}+n\sqrt[3]{n^3+3n^2}+n^2}=lim\frac{3}{\sqrt[3]{\left(1+\frac{3}{n}\right)^2}+\sqrt[3]{1+\frac{3}{n}}+1}=\frac{3}{1+1+1}=1\)
1.
\(\lim\dfrac{5\sqrt{3n^2+n}}{2\left(3n+2\right)}=\lim\dfrac{5\sqrt{3+\dfrac{1}{n}}}{2\left(3+\dfrac{2}{n}\right)}=\dfrac{5\sqrt{3}}{6}\Rightarrow a+b=11\)
2.
\(\lim\limits_{x\rightarrow2}\dfrac{x^2+ax+b}{x-2}=6\) khi \(x^2+ax+b=0\) có nghiệm \(x=2\)
\(\Rightarrow4+2a+b=0\Rightarrow b=-2a-4\)
\(\lim\limits_{x\rightarrow2}\dfrac{x^2+ax-2a-4}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)+a\left(x-2\right)}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+a+2\right)}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\left(x+a+2\right)=a+4\Rightarrow a+4=6\Rightarrow a=2\Rightarrow b=-8\)
\(\Rightarrow a+b=-6\)