\(\frac{x}{5}\)=\(\frac{y}{6}\);\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

Answer:

Câu 1: đề khó hiểu quá nên mình bỏ qua nhé!

Câu 2:

Có:

\(2a=3b\)

\(\Rightarrow\frac{2a}{6}=\frac{3b}{6}\)

\(\Rightarrow\frac{a}{3}=\frac{b}{2}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)

\(5b=7c\)

\(\Rightarrow\frac{5b}{35}=\frac{7c}{35}\)

\(\Rightarrow\frac{b}{7}=\frac{c}{5}\)

\(\Rightarrow\frac{b}{14}=\frac{c}{10}\)

\(\Leftrightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a+5c-7b}{3.21+5.10-7.14}=\frac{30}{15}=2\)

\(\Rightarrow\hept{\begin{cases}a=42\\b=28\\c=20\end{cases}}\)

4 tháng 2 2022

thank bạn :>

13 tháng 9 2018

bài 1: có 2x-y=1=> 2x=1+y=> x =1+y/2 (1)

thay (1) vào pt trên: x/2=y/5=(1+y/2)/2=y/5 => 1+y/4=y/5=> 5(1+y)=4y (nhân chéo)=> y= -5=> x=(1+-5)/2=-2

13 tháng 9 2018

câu 2: a) tương tự như bài 1:thay b=4+a vào pt => a=8 và b=12

bài 3 dể mà!!!:)).    3^n+2 +3^n=270=> 3^n.3^2+3^n=270=> 3^n.(9+1)=270( vì 3 bình =9)=> 3^n=27=3^3 => n=3

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

14 tháng 2 2019

CÁC BÀI NÀY ĐỀU GIẢI THEO TÍNH CHẤT DÃY TỈ SỐ BẮNG NHAU

a) ta có: 2a = 3b; 5b = 7c

\(\Rightarrow\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}\left(1\right);\frac{b}{14}=\frac{c}{10}\left(2\right)\)

VẾ (1) nhân cả 2 số với\(\frac{1}{7}\); VẾ (2) nhân cả hai số với \(\frac{1}{2}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU, TA CÓ:

\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)

PHẦN SAU TỰ LÀM^-^

c) ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU TA CÓ:

   \(\frac{a}{3}=\frac{b+1}{4}=\frac{c+2}{5}=\frac{a-b-1+c+2}{3-4+5}=\frac{a-b+c+1}{4}=\frac{-17}{4}\)

PHẦN SAU TỰ LÀM^-^

12 tháng 10 2018

\(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\) va \(x+y-z=69\)

Ta co: \(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\) ; \(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)

\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)\(\dfrac{x+y-z}{20+24-21}\)

\(\dfrac{69}{23}=3\)\(x=20.3=60\)

\(y=24.3=72\)

\(z=21.3=63\)

\(Vay\) \(x=60;y=72;z=63\)

\(2a=3b;5b=7c\) va \(3a+5c-7c=30\)

Ta co: \(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\)

\(5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\)

\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)\(\dfrac{3a}{63}=\dfrac{5c}{50}=\dfrac{7b}{98}\)\(\dfrac{3a+5c-7b}{63+50-98}\)

\(\dfrac{30}{15}=2\)\(3a=63.2=126\)\(a=126:3=42\)

\(5c=50.2=100\) \(c=100:5=20\)

\(7b=98.2=196\) \(b=196:7=28\)

Vay \(a=42;c=20;b=28\)

\(x\div y\div z=3\div8\div5\) va \(3x+y-2z=14\)

Ta co: \(x\div y\div z=3\div8\div5\Rightarrow\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\)

\(\dfrac{3x}{9}=\dfrac{y}{8}=\dfrac{2z}{10}\)\(\dfrac{3x+y-2z}{9+8-10}\)

\(\dfrac{14}{7}=2\)\(3x=9.2=18\)\(x=18:3=6\)

\(y=8.2\) \(y=16\)

\(2z=10.2=20\) \(z=20:2=10\)

Vay \(x=6;y=16;z=10\)

Chuc ban hoc tot hihi

14 tháng 10 2016

Tìm các số a, b, c  biết rằng :

     1 . Ta có:       \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)

 Ap dụng tính chất dãy tỉ số bắng nhau ta dược :

                    \(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)

Nên : a/20=1/3\(\Leftrightarrow\)     a=1/3.20    \(\Leftrightarrow\)a=20/3

        b/9=1/3   \(\Leftrightarrow\)      b=1/3.9     \(\Leftrightarrow\)    b=3

        c/6=1/3   \(\Leftrightarrow\)      c=1/3.6   \(\Leftrightarrow\)      c= 2

14 tháng 10 2016

mấy bài sau làm tương tự nhu câu 1

26 tháng 1 2017

Bài 2:

Giải:

Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow x=5k,y=4k\)

Ta có: \(x^2-y^2=1\)

\(\Rightarrow\left(5k\right)^2-\left(4k\right)^2=1\)

\(\Rightarrow5^2.k^2-4^2.k^2=1\)

\(\Rightarrow k^2\left(5^2-4^2\right)=1\)

\(\Rightarrow k^2.9=1\)

\(\Rightarrow k^2=\frac{1}{9}\)

\(\Rightarrow k=\pm\frac{1}{3}\)

+) \(k=\frac{1}{3}\Rightarrow x=\frac{5}{3};y=\frac{4}{3}\)

+) \(k=\frac{-1}{3}\Rightarrow x=\frac{-5}{3};y=\frac{-4}{3}\)

Vậy cặp số \(\left(x;y\right)\)\(\left(\frac{5}{3};\frac{4}{3}\right);\left(\frac{-5}{3};\frac{-4}{3}\right)\)

Bài 3:

Giải:

Ta có: \(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)

\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{21}=\frac{c}{15}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{15}\)

...

Bài 4:

Giải:

Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)

\(\Rightarrow a=2k,b=3k,c=5k\)

Ta có: \(P=\frac{b+c-a}{a-b+c}=\frac{3k+5k-2k}{2k-3k+5k}=\frac{\left(3+5-2\right)k}{\left(2-3+5\right)k}=\frac{6}{4}=\frac{3}{2}\)

Vậy \(P=\frac{3}{2}\)

26 tháng 1 2017

4) đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)

=> a = 2k

b = 3k

c = 4k

thay vào P ta có:

P = \(\frac{3k+4k-2k}{2k-3k+4k}=\frac{7k-2k}{4k-k}=\frac{5k}{3k}=\frac{5}{3}\)

vậy P = \(\frac{5}{3}\)

10 tháng 3 2022

xin lỗi vì chửi hưi quá miệng hahaha

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

a/ 

Đặt $\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}=k$

$\Rightarrow a=2k+1; b=3k+2; c=4k+3$

Khi đó:

$3a+3b-c=50$

$\Rightarrow 3(2k+1)+3(3k+2)-(4k+3)=50$

$\Rightarrow 11k+6=50$

$\Rightarrow 11k=44\Rightarrow k=4$

Ta có:

$a=2k+1=2.4+1=9$

$b=3k+2=3.4+2=14$

$c=4k+3=4.4+3=19$

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

b/

$2a=3b; 5b=7c\Rightarrow \frac{a}{3}=\frac{b}{2}; \frac{b}{7}=\frac{c}{5}$

$\Rightarrow \frac{a}{21}=\frac{b}{14}=\frac{c}{10}$

Áp dụng TCDTSBN:

$\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{45}{15}=3$

$\Rightarrow a=21.3=63; b=14.3=42; c=10.3=30$