K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đóng hai chiếc đinh cố định tại hai điểm \({F_1},{F_2}\) trên mặt một bảng gỗ. Lấy một thước thẳng có mép AB và một sợi dây không đàn hồi có chiều dài \(l\)  thoả mãn\(AB--{F_1}{F_2}{\rm{ }} < l < AB\) . Đính một đầu dây vào điểm A và đầu dây kia vào \({F_2}\). Đặt thước sao cho điểm B trùng với \({F_1}\), và lấy đầu bút chì (kí hiệu là M) tì sát sợi dây vào thước thẳng sao cho sợi dây...
Đọc tiếp

Đóng hai chiếc đinh cố định tại hai điểm \({F_1},{F_2}\) trên mặt một bảng gỗ. Lấy một thước thẳng có mép AB và một sợi dây không đàn hồi có chiều dài \(l\)  thoả mãn\(AB--{F_1}{F_2}{\rm{ }} < l < AB\) . Đính một đầu dây vào điểm A và đầu dây kia vào \({F_2}\). Đặt thước sao cho điểm B trùng với \({F_1}\), và lấy đầu bút chì (kí hiệu là M) tì sát sợi dây vào thước thẳng sao cho sợi dây luôn bị căng. Sợi dây khi đó là đường gấp khúc\(AM{F_2}\) , Cho thước quay quanh điểm B (trùng \({F_1}\)), tức là điểm A chuyển động trên đường tròn tâm B có bán kính bằng độ dài đoạn thẳng AB, mép thước luôn áp sát mặt gỗ (Hình 53). Khi đó, đầu bút chì M sẽ vạch nên một đường mà ta gọi là đường hypebol. Khi M thay đổi, có nhận xét gì về hiệu\(M{F_1} - M{F_2}\) ?

1
HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Khi M thay đổi, hiệu \(M{F_1} - M{F_2} = \left( {M{F_1} + MA} \right) - \left( {M{F_2} + MA} \right) = AB - l{\rm{ }}\)không đổi.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Đường vừa nhận được là đường “màu đỏ” trong Hình 7.17.

b) Tổng khoảng cách từ đẩu bút đến các vị trí không thay đổi.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Trọng lực của hai vật đều hướng xuống, vuông góc với mặt đất, đo dó chúng cùng phương, cùng hướng với nhau.

Hơn nữa: Công thức tính độ lớn trọng lực là: \(P = mg\).

Hai vật có khối lượng như nhau, do đó  \({P_1} = {P_2}\)

Vậy \(\overrightarrow {{P_1}}  = \overrightarrow {{P_2}} \)

b) Do trọng lực tạo thành lực kéo lên mảnh nhựa nên độ lớn của các lực \(\overrightarrow {{F_1}} ,\;\overrightarrow {{F_2}} \) là như nhau.

Chúng có hướng ngược nhau.

12 tháng 6 2018

Đáp án D

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Khi M thay đổi, ta có: \(M{F_1} + M{F_2} +{F_1}{F_2} =\) độ dài vòng dây

⇒ Tổng độ dài \(M{F_1} + M{F_2}\) là một độ dài không đổi (độ dài vòng dây - {F_1}{F_2}).

Lấy một tấm bìa, trên đó đánh dấu hai điểm \({F_1}\) và \({F_2}\). Lấy một cây thước thẳng với mép thước  AB có chiều dài d và một đoạn dây không đàn hồi có chiều dài l sao cho \(d - l = 2a\) nhỏ hơn khoảng cách \({F_1}{F_2}\) (hình 6a).Đính một đầu dây vào đầu A của thước, dùng đinh ghim đầu dây còn lại vào điểm \({F_2}\). Đặt thước sao cho đầu B của thước trùng với điểm \({F_1}\)....
Đọc tiếp

Lấy một tấm bìa, trên đó đánh dấu hai điểm \({F_1}\) và \({F_2}\). Lấy một cây thước thẳng với mép thước  AB có chiều dài d và một đoạn dây không đàn hồi có chiều dài l sao cho \(d - l = 2a\) nhỏ hơn khoảng cách \({F_1}{F_2}\) (hình 6a).

Đính một đầu dây vào đầu A của thước, dùng đinh ghim đầu dây còn lại vào điểm \({F_2}\). Đặt thước sao cho đầu B của thước trùng với điểm \({F_1}\). Tựa đầu bút chì vào dây, di chuyển điểm M trên tấm bìa và giữ sao cho dây luôn căng, đoạn AM ép sát vào thước, khi đó M sẽ gạch lên tấm bìa một đường (H) (xem hình 6b)

a) Chứng tỏ rằng khi M di động, ta luôn có \(M{F_1} - M{F_2} = 2a\)

b) Vẫn đính một đầu dây vào đầu A của thước nhưng đổi chỗ cố định đầu dây còn lại vào \({F_1}\), đầu B của thước trùng với \({F_2}\) sao cho đoạn thẳng BA có thể quay quanh \({F_2}\)và làm tương tự như lần đầu để bút chì M vẽ được một nhánh khác của đường (H) (hình 6c). Tính \(M{F_2} - M{F_1}\)

1
HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Khi điểm trùng với điểm ta có:

\(M{F_1} - M{F_2} = A{F_1} - A{F_2} = AB - A{F_2} = d - l = 2a\)

b) Tương tự khi điểm trùng với điểm ta có:

\(M{F_2} - M{F_1} = A{F_2} - A{F_1} = AB - A{F_1} = d - l = 2a\)

7 tháng 12 2022

làm chi tiết đi bạn giúp mik vs

11 tháng 5 2016

Đầu tiên, cứ gọi 2 sợi dây là A và B cho dễ nhé. Muốn giải được câu đố này, bạn phải dựa vào dữ kiện duy nhất được cung cấp: A và B đều cháy hết trong vòng 1 giờ đồng hồ khi đốt cháy một đầu.

Điều này có nghĩa là nếu đốt cháy 2 đầu, sợi dây sẽ cháy trong đúng 30 phút. Và sau khi cháy được một nửa, bạn đốt nốt đầu còn lại, thì khoảng thời gian cho đoạn dây còn lại cháy hết sẽ đúng bằng 15 phút.

Vậy vấn đề bây giờ chỉ là làm cách nào đo được chính xác thời điểm đoạn dây cháy còn một nửa mà thôi.

Dễ quá rồi đúng không: Với dây A, hãy đốt cháy 2 đầu, đồng thời đốt một đầu của dây B.

Đáp án của câu đố kinh điển trên.
Đáp án của câu đố kinh điển trên.

Khi dây A cháy hết, dây B sẽ còn 30 phút nữa để cháy. Giờ hãy châm lửa vào đầu còn lại của dây B, và khi B cháy hết, chính xác 45 phút đã trôi qua.

nha hoc24

11 tháng 5 2016

Làm sao để ghi dấu tick như cậu zậy

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Gọi \(y = f(x) = a{x^2} + bx + c\) là công thức của hàm số có đồ thị là hình ảnh của bộ phận chống đỡ. 

Chọn hệ trục tọa độ Oxy như hình dưới:

Gọi S là đỉnh của parabol, dưới vị trí nhảy 1m.

A, B là các điểm như hình vẽ.

Dễ thấy: A (50; 45) và B (120+50; 0) = (170; 0).

Các điểm O, A, B đều thuộc đồ thị hàm số.

Do đó:

\(f(0) = a{.0^2} + b.0 + c = 0 \Leftrightarrow c = 0\)

\(f(50) = a{.50^2} + b.50 + c = 45 \Leftrightarrow a{.50^2} + b.50 = 45\)

\(f(170) = a{.170^2} + b.170 + c = 0 \Leftrightarrow a{.170^2} + b.170 = 0 \Leftrightarrow a.170+ b = 0\)

Giải hệ phương trình \(\left\{ \begin{array}{l}a{.50^2} + b.50 = 45\\a.170 + b = 0\end{array} \right.\) ta được \(a =  - \frac{{3}}{{400}};b = \frac{{51}}{{40}}\)

Vậy \(y = f(x) =  - \frac{{3}}{{400}}{x^2} + \frac{{51}}{{40}}x\)

Đỉnh S có tọa độ là \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - \frac{{51}}{{40}}}}{{2.\left( { - \frac{{3}}{{400}}} \right)}} = 85;\;{y_S} =  - \frac{{3}}{{400}}.8{5^2} + \frac{{51}}{{40}}.85 = \frac{{867}}{{16}} \approx 54,2\)

Khoảng cách từ vị trí bắt đầu nhảy đến mặt nước là: \(1 + 54,2 + 43 = 98,2(m)\)

Vậy chiều dài của sợi dây đó là: \(98,2:3  \approx 32,7\,(m)\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Gọi chiều cao bức tường DG là x (m) (x>0)

Chiều dài chiếc thang là x+1 (m)

Khoảng cách từ chân thang sau khi bác Nam điều chỉnh là: \(EG = \frac{{DG}}{{\sqrt 3 }} = \frac{{x\sqrt 3 }}{3}\) (m)

Áp dụng định lý Py-ta-go cho tam giác vuông ABC ta có:

\(BC = \sqrt {{{\left( {x + 1} \right)}^2} - {x^2}} \)(m)

Bác Nam dịch chuyển chân thang vào gần chân tường thêm 0,5 m nên ta có:

\(\sqrt {{{\left( {x + 1} \right)}^2} - {x^2}}  - 0,5 = \frac{{x\sqrt 3 }}{3}\)

\(\begin{array}{l} \Leftrightarrow \sqrt {{{\left( {x + 1} \right)}^2} - {x^2}}  = \frac{x}{{\sqrt 3 }} + 0,5\\ \Leftrightarrow \sqrt {2x + 1}  = \frac{x}{{\sqrt 3 }} + 0,5\left( * \right)\end{array}\)

Ta có \(\frac{x}{{\sqrt 3 }} + 0,5 \ge 0 \Leftrightarrow \frac{x}{{\sqrt 3 }} \ge  - \frac{1}{2}\)\( \Leftrightarrow x \ge  - \frac{{\sqrt 3 }}{2}\) (Luôn đúng do x>0)

Ta bình phương hai vế (*) ta được:

\(\begin{array}{l}2x + 1 = {\left( {\frac{x}{{\sqrt 3 }} + 0,5} \right)^2}\\ \Leftrightarrow 2x + 1 = \frac{{{x^2}}}{3} + \frac{x}{{\sqrt 3 }} + 0,25\\ \Leftrightarrow \frac{{{x^2}}}{3} + \left( {\frac{{\sqrt 3 }}{3} - 2} \right)x - \frac{3}{4} = 0\\ \Leftrightarrow \left[ \begin{array}{l}x \approx 4,7\left( {tm} \right)\\x \approx  - 0,5\left( {ktm} \right)\end{array} \right.\end{array}\)

Vậy chiều cao của bức tường là 4,7 m.