Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trong mẫu số liệu (1), hiệu giữa số đo lớn nhất và số đo nhỏ nhất là
\(R = {x_{\max }} - {x_{\min }} = 16 - 14 = 2\)
b) +) Sắp xếp các số liệu của mẫu (1) theo thứ tự tăng dần, ta được:
2 5 6 7 8 9 10 11 12 14 16
+) Vậy \({Q_1}{\rm{ }} = 6;{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}9;{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}12\) . Suy ra \({Q_3} - {Q_1}{\rm{ = }}12{\rm{ }} - 6 = 6\)
Mẫu số liệu trên được xếp có 11 số liệu nên \({M_e} = 6\).
a) +) Mẫu số liệu đồng bằng sông Hồng:
Số trung bình của mẫu số liệu:
Sắp xếp số liệu trên theo thứ tự không giảm ta được:
23; 27; 34; 35; 37; 39; 46; 54; 57; 57; 187.
Vì n = 11 là số lẻ nên trung bị Q2 = 39.
Nửa số liệu bên trái có tứ phân vị thứ nhất là: Q1 = 34.
Nửa số liệu bên phải có tứ phân vị thứ ba là: Q3 = 57.
Khoảng tứ phân vị là:
ΔQ = Q3 – Q1 = 57 – 34 = 23.
Ta có giá trị lớn nhất của số liệu là 187 và giá trị nhỏ nhất là 23. Khi đó khoảng biến thiên là: R = 187 – 23 = 164.
Theo quan sát số liệu, ta thấy giá trị 57 có tần số suất hiện nhiều nhất nên mốt là 57.
+) Mẫu số liệu đồng bằng sông Cửu Long:
Số trung bình của mẫu số liệu:
Sắp xếp số liệu trên theo thứ tự không giảm ta được:
15; 19; 23; 24; 24; 24; 26; 29; 33; 33; 34; 39; 42.
Vì n = 13 là số lẻ nên trung vị Q2 = 26.
Nửa số liệu bên trái có tứ phân vị thứ nhất là: Q1 = (23 + 24):2 = 23,5.
Nửa số liệu bên phải có tứ phân vị thứ ba là: Q3 = (33 + 34):2 = 33,5.
Khoảng tứ phân vị là:
ΔQ = Q3 – Q1 = 33,5 – 23,5 = 10.
Ta có giá trị lớn nhất của số liệu là 42 và giá trị nhỏ nhất là 15. Khi đó khoảng biến thiên là: R = 42 – 15 = 27.
Theo quan sát số liệu, ta thấy giá trị 24 có tần số suất hiện nhiều nhất nên mốt là 24.
b) Vì trong mẫu số liệu thứ nhất có giá trị bất thường là 187, giá trị này làm ảnh hưởng đến giá trị trung bình của mẫu số liệu một nên có sự sai khác nhiều hai số trung bình của hai mẫu số liệu còn trung vị thì không.
c) Vì trong mẫu số liệu thứ nhất có giá trị bất thường là 187, giá trị này là giá trị lớn nhất nên ảnh hưởng đến khoảng biến thiên của mẫu số liệu một. Trong khi đó, các giá trị của mẫu số liệu hai không có giá trị nào bất thường. Do đó khoảng biến thiên của hai mẫu số liệu có sự chênh lệch nhau.
Độ phân tán của mẫu số liệu một lớn hơn nhiều so với độ phân tán của mẫu số liệu hai. Do đó độ lệch chuẩn của hai số liệu sau có sự khác biệt.
Khoảng tứ phân vị là khoảng biến thiên của 50% số liệu chính giữa mà các giá trị chính giữa của hai mẫu số liệu không quá chênh lệch. Do đó khoảng tứ phân vị của hai mẫu số liệu không quá khác biệt.
a) +) Mẫu số liệu đồng bằng sông Hồng:
Số trung bình của mẫu số liệu:
Sắp xếp số liệu trên theo thứ tự không giảm ta được:
23; 27; 34; 35; 37; 39; 46; 54; 57; 57; 187.
Vì n = 11 là số lẻ nên trung bị Q2 = 39.
Nửa số liệu bên trái có tứ phân vị thứ nhất là: Q1 = 34.
Nửa số liệu bên phải có tứ phân vị thứ ba là: Q3 = 57.
Khoảng tứ phân vị là:
ΔQ = Q3 – Q1 = 57 – 34 = 23.
Ta có giá trị lớn nhất của số liệu là 187 và giá trị nhỏ nhất là 23. Khi đó khoảng biến thiên là: R = 187 – 23 = 164.
Theo quan sát số liệu, ta thấy giá trị 57 có tần số suất hiện nhiều nhất nên mốt là 57.
+) Mẫu số liệu đồng bằng sông Cửu Long:
Số trung bình của mẫu số liệu:
Sắp xếp số liệu trên theo thứ tự không giảm ta được:
15; 19; 23; 24; 24; 24; 26; 29; 33; 33; 34; 39; 42.
Vì n = 13 là số lẻ nên trung vị Q2 = 26.
Nửa số liệu bên trái có tứ phân vị thứ nhất là: Q1 = (23 + 24):2 = 23,5.
Nửa số liệu bên phải có tứ phân vị thứ ba là: Q3 = (33 + 34):2 = 33,5.
Khoảng tứ phân vị là:
ΔQ = Q3 – Q1 = 33,5 – 23,5 = 10.
Ta có giá trị lớn nhất của số liệu là 42 và giá trị nhỏ nhất là 15. Khi đó khoảng biến thiên là: R = 42 – 15 = 27.
Theo quan sát số liệu, ta thấy giá trị 24 có tần số suất hiện nhiều nhất nên mốt là 24
b) Vì trong mẫu số liệu thứ nhất có giá trị bất thường là 187, giá trị này làm ảnh hưởng đến giá trị trung bình của mẫu số liệu một nên có sự sai khác nhiều hai số trung bình của hai mẫu số liệu còn trung vị thì không.
c) Vì trong mẫu số liệu thứ nhất có giá trị bất thường là 187, giá trị này là giá trị lớn nhất nên ảnh hưởng đến khoảng biến thiên của mẫu số liệu một. Trong khi đó, các giá trị của mẫu số liệu hai không có giá trị nào bất thường. Do đó khoảng biến thiên của hai mẫu số liệu có sự chênh lệch nhau.
Độ phân tán của mẫu số liệu một lớn hơn nhiều so với độ phân tán của mẫu số liệu hai. Do đó độ lệch chuẩn của hai số liệu sau có sự khác biệt.
Khoảng tứ phân vị là khoảng biến thiên của 50% số liệu chính giữa mà các giá trị chính giữa của hai mẫu số liệu không quá chênh lệch. Do đó khoảng tứ phân vị của hai mẫu số liệu không quá khác biệt.
Trong dãy số liệu thống kê trên có 20 giá trị ( không phân biệt) nên có tất cả 20 vận động viên tham gia chạy.
Vậy kích thước mẫu là 20
Chọn B.
Đặt a = 6 + 13 , b = 19 v à c = 3 + 16 thì a, b, c đều dương.
Vì a 2 = 19 + 2 78 , b 2 = 19 , c 2 = 19 + 2 48 nên b 2 < c 2 < a 2 , do đó b < c < a . Đáp án là A.