Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
DO đó: F là trung điểm của AC
Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình
=>EF//BC
hay BEFC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BEFC là hình thang cân
Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên
- Bài 1
a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
và MN=1/2DC => MN= DE(2)
từ (1)và (2) => MNED là hbh
b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
=> tam giác ADM cân tại M => MDA = DAM
=> DEN= MAD (3)
MN//DE=> MN//AE => AMNE là hình thang (4)
từ (3)và (4) => AMNE là hình thang cân
c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B17 Tháng mười hai 2013#2 nhuquynhdatGuest
bài 2
a) AB//CD => AB//CE(1)
Xét tam giác ADE có AH là đg` cao
lại có E đối xứng với D qua H => H là trung điểm của DE => AH là trung tuyến
=> tam giác ADE cân tại A
=> ADE=AED(goác đáy tam giác cân)
mặt khác ABCD là hình thang cân => ADC=góc C
=> góc C= AED
mà 2 góc này ở vị trí đồng vị của AE và BC => AE//BC(2)
từ (1)và (2) => ABCE là hbh
b) xét tam giác AHE và tam giác FHD có góc AHE=góc DHF(đối đỉnh)
DH=HE(gt)
AE//DF(gt)=> AEH=FDH(SLT)
=>tam giác AHE=tam giác FHD(gcg) => AH=HF => H là TĐ của AF
c) Ta có AH=HF(câu b)DH=HE(gt) => ADFE là hbh
mà AH vg góc với ED=> AF vg góc với ED => ADEF là hình thoi
lại có tam giác ADE cân tại A (câu a)=> AD=AE => ADEF là hình vg
a) Vì hình thang ABCD là 1 tứ giác
=> ^A+^B+^C+^D=360o
=> 100o+135o+^C+80o=360o
=> 315o+^C=360o
=> ^C=360o-315o
=> ^C=45o
Vậy ^C=45o
b) Ta có E trung điểm AD; EF//CD
=> EF là đường tb của hình thang ABCD
=> F là trung điểm BC
=> BF=FC (đpcm)
c) Vì EL _|_ CD; FG _|_ CD
=>EL//FG (1)
Mà: EF//DC ( EF là đường tb)
=> EF//LG (2)
Từ (1) và (2)=> EFGL là hình bình hành
Lại có: ^ELG=90o hoặc ^FGL (EL_|_CD);(FG_|_CD)
=> EFGL là hcn ( hbh có 1 góc _|_) (đpcm)
ABCD10013580E--FLG
a) áp dụng định lý Pytago ta có:
BC2 = AB2 + AC2
\(\Rightarrow\)BC2 = 62 + 82 = 100
\(\Rightarrow\)BC = \(\sqrt{100}\)= 10
\(\Delta\)ABC vuông tại A có AM là trung tuyến
\(\Rightarrow\)AM = \(\frac{BC}{2}\)= \(\frac{10}{2}\)= 5cm
b) AKMN là hình chữ nhật vì \(\widehat{AKM}\)= \(\widehat{KAN}\)= \(\widehat{ANM}\)= 900
c) KM \(\perp\)AB; AB \(\perp\)AC
\(\Rightarrow\)KM // AC
\(\Delta ABC\)có KM // AC; MB = MC
\(\Rightarrow\)KA = KB
\(\Rightarrow\)KM là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)KM = \(\frac{AC}{2}\)
CM tương tự ta có: NC =\(\frac{AC}{2}\)
suy ra KM = NC
mà KM // NC
nên KMNC là hình bình hành
a.vì tứ giác ABCD là hình bình hành
suy ra AB//CD, AB = CD
vì AB = CD mà M, N lần lượt là trung điểm AB, CD
suy ra AM = CN
mà AM//CN (M, N thuộc AB, CD) và AM = CN
\(\Rightarrow\) tứ giác AMCN là hình bình hành
b.MF//AE, M là trung điểm AB nên MF là đường trung bình của tam giác
Suy ra F là trung điểm của BE
c.vì AMCN là hình bình hành
suy ra AN//CM
xét tam giác ABE có
MF//AE, M là trung điểm AB
suy ra MF là đường trung bình của tam giác
suy ra F là trung điểm BE
chứng minh tương tự với tam giác CDF, ta được E là trung điểm DF
từ đó suy ra DE = EF = FB
a) Xét hình bình hành ABCD có:
AB=CD => AM=CN (1)
AB//CD => AM//CN (2)
Từ (1) và (2) => Tứ giác AMCN là hình bình hành (dấu hiệu 3)
b) Ta có: MF//AE (do CM//AN)
Xét tam giác BEA có:
MF//AE
AM=MB
=> MF là đường trung bình của tam giác BEA
=> EF=FB hay F là trung điểm của BE
c) Ta có: CF//NE (do CM//AN)
Xét tam giác DFC có:
DN=NC
CF//NE
=> NE là đường trung bình của tam giác DFC
=> DE=EF
mà EF=FB nên DE=EF=FB
Chọn B
b