K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2024

a; \(x\left(x+1\right)\) - (\(x+1\))2 = 5

   (\(x-x-1\))(\(x+1\))= 5

    (0 - 1).(\(x+1\)) = 5

             -1.(\(x+1\)) = 5

                  \(x+1\) = -5

                  \(x=-5-1\)

                  \(x=-6\)

Vậy \(x=-6\)

b; \(x^2\) - 4\(x=0\)

  \(x\).(\(x-4\)) = 0

  \(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy \(x\) \(\in\) {0; 4}

      

7 tháng 11 2024

khó vậy em ko biết

7 tháng 11 2024

 Bài 1:

a; (\(x+1\)).(\(x+2\)) - (\(x-1\)).(\(x-5\)) = 0

    \(x^2\) + 2\(x\) + \(x+2\) - \(x^2\) + 5\(x\) + \(x\) - 5 = 0

   (\(x^2\) - \(x^2\)) + (2\(x\) + \(x+5x+x\))- (5  -2) = 0

        0 + (3\(x\) + 5\(x\) + \(x\)) + 0 - 3 = 0

                 8\(x\) + \(x\) - 3 = 0

                 9\(x\) = 3

                    \(x=\dfrac{3}{9}\)

Vậy \(x=\dfrac{1}{3}\)

7 tháng 11 2024

b; (2\(x\) - 1)2 + 4.(5 - \(x\)) = 15

     4\(x^2\) - 4\(x\) + 1 + 20 - 4\(x\) = 15

     4\(x^2\) - (4\(x\) + 4\(x\)) + (1 + 20 - 15) = 0

        4\(x^2\) - 8\(x\) + 6 = 0

         4.(\(x^2\) - 2\(x\) + 1) + 2 = 0

         4(\(x-1\))2 + 2 = 0

Vì 4.(\(x-1\))2 ≥ 0 ⇒ 4.(\(x-1\))2 + 2  ≥ 3 > 0 (\(\forall x\))

Vậy không có giá trị nào của \(x\) thỏa mãn đề bài

Kết luận \(x\) \(\in\) \(\varnothing\)

30 tháng 11 2016

\(2x^2-7x+5=0\)

\(2x^2-2x-5x+5=0\)

\(2x\left(x-1\right)-5\left(x-1\right)=0\)

\(\left(x-1\right)\left(2x-5\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)

\(x\left(2x-5\right)-4x+10=0\)

\(x\left(2x-5\right)-2\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(x-2\right)=0\)

\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)

\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)

\(x^2-25-x^2+2x=15\)

\(2x=15+25\)

\(2x=40\)

\(x=\frac{40}{2}\)

\(x=20\)

\(x^2\left(2x-3\right)-12+8x=0\)

\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)

\(\left(2x-3\right)\left(x^2+4\right)=0\)

\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))

\(2x=3\)

\(x=\frac{3}{2}\)

\(x\left(x-1\right)+5x-5=0\)

\(x\left(x-1\right)+5\left(x-1\right)=0\)

\(\left(x-1\right)\left(x+5\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)

\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)

\(4x^2-12x+9-4x^2+4x=5\)

\(-8x=5-9\)

\(-8x=-4\)

\(x=\frac{4}{8}\)

\(x=\frac{1}{2}\)

\(x\left(5-2x\right)+2x\left(x-1\right)=13\)

\(5x-2x^2+2x^2-2x=13\)

\(3x=13\)

\(x=\frac{13}{3}\)

\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)

\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)

\(\left(2x-5\right)\left(x+11\right)=0\)

\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)

30 tháng 11 2016

Cảm ơn

 

31 tháng 8 2015

Rút gọn hết ta được :

a/ 41x - 17 = -21

=> 41x = -4 => x = 4/41

b/ 34x - 17 = 0 

=> 34x = 17

=> x = 17/34 = 1/2

c/ 19x + 56 = 52 

=> 19x = -4

=> x = -4/19

d/ 20x2 - 16x - 34 = 10x2 + 3x - 34

=> 10x2 - 19x = 0

=> x(10x - 19) = 0

=> x = 0 

hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10

Vậy x = 0 ; x = 19/10

2 tháng 1 2016

Rút gọn hết ta được :

a/ 41x - 17 = -21

=> 41x = -4 => x = 4/41

b/ 34x - 17 = 0

=> 34x = 17

=> x = 17/34 = 1/2

c/ 19x + 56 = 52

=> 19x = -4

=> x = -4/19

d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34

=> 10x 2 - 19x = 0

=> x(10x - 19) = 0

=> x = 0 hoặc 10x - 19 = 0

=> 10x = 19

=> x = 19/10

Vậy x = 0 ; x = 19/10 

16 tháng 9 2017

a) \(5\left(x+7\right)-12x=15\)

\(5x+35-12x=15\)

\(-7x=15-35\)

\(-7x=-20\)

\(x=\frac{20}{7}\)

vay \(x=\frac{20}{7}\)

b) \(x^2-25-\left(x+5\right)=0\)

\(x^2-5^2-\left(x+5\right)=0\)

\(\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)

\(\left(x+5\right)\left(x-5-1\right)=0\)

\(\left(x+5\right)\left(x-6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)

vay \(\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)

c) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)

\(\left(2x-1\right)\left(2x-1\right)-\left(\left(2x\right)^2-1^2\right)=0\)

\(\left(2x-1\right)\left(2x-1\right)-\left(2x-1\right)\left(2x+1\right)=0\)

\(\left(2x-1\right)\left(2x-1-2x-1\right)=0\)

\(-2.\left(2x-1\right)=0\)

\(\Rightarrow2x-1=0\)

\(\Rightarrow x=\frac{1}{2}\)

vay \(x=\frac{1}{2}\)

d) \(x^2.\left(x^2+4\right)-x^2-4=0\)

\(x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)

\(\left(x^2-1\right)\left(x^2+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-1=0\\x^2+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1hoacx=-1\\kotontai\end{cases}}\)

vay \(x=1\)hoac \(x=-1\)

18 tháng 7 2017

 a) Ta có : 6x(3x + 5) - 2x(9x - 2) + (17 - x)(x - 1) + x(x - 18) = 0

<=> 18x2 + 30x - 18x2 + 4x + 17x - 17 - x2 + x + x2 - 18x = 0

<=> 34x - 17 = 0

<=> 34x = 17

=> x = 2

30 tháng 12 2016

b)   ( 2x - 3 ) - ( 3 - 2x )( x - 1 ) = 0

<=> ( 2x - 3 ) + ( 2x - 3 )( x - 1 ) = 0

<=> ( 2x - 3 )( 1 + x - 1 ) = 0

<=> x( 2x - 3 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)

Vậy .....

30 tháng 12 2016

a, 25x^2 - 1 - (5x -1)(x+2)=0

=> (5x)^2 - 1 + (5x-1)(x+2) = 0

=> (5x-1)(5x+1) + (5x-1)(x+2) = 0

=> (5x-1)(5x+1+x+2) = 0

=> (5x-1)(6x+3) = 0

=> \(\orbr{\begin{cases}5x-1=0\\6x+3=0\end{cases}}\)

17 tháng 8 2021

Trả lời:

a, \(\left(3x+1\right)\left(x-3\right)-x\left(3x-14\right)=15\)

\(\Leftrightarrow3x^2-9x+x-3-3x^2+14x=15\)

\(\Leftrightarrow6x-3=15\)

\(\Leftrightarrow6x=18\)

\(\Leftrightarrow x=3\)

Vậy x = 3 là nghiệm của pt.

b, \(\left(x-3\right)^2=9-x^2\)

\(\Leftrightarrow\left(x-3\right)^2-9+x^2=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-3+x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right).2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}}\)

Vậy x = 3; x = 0 là nghiệm của pt.

c, \(\left(2x-\frac{1}{2}\right)^2-\left(1-2x\right)^2=2\)

\(\Leftrightarrow4x^2-2x+\frac{1}{4}-\left(1-4x+4x^2\right)=2\)

\(\Leftrightarrow4x^2-2x+\frac{1}{4}-1+4x-4x^2=2\)

\(\Leftrightarrow2x-\frac{3}{4}=2\)

\(\Leftrightarrow2x=\frac{11}{4}\)

\(\Leftrightarrow x=\frac{11}{8}\)

Vậy x = 11/8 là nghiệm của pt.

d, \(4x^2+4x-3=0\)

\(\Leftrightarrow4x^2-2x+6x-3=0\)

\(\Leftrightarrow2x\left(2x-1\right)+3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)

Vậy x = 1/2; x = - 3/2 là nghiệm của pt.

25 tháng 8 2016

a) ( 2x + 3 )^2 - 4( x - 1 )( x + 1 ) = 49

=>4x2+12x+9-4x2+4=49

 =>12x+13=49

=>12x=36

=>x=3

b) 16x^2 - ( 4x - 5 )^2 = 15

=>16x2-16x2+40x-25=15

=>40x-25=15

=>40x=40

=>x=1

c) ( 2x + 1 )^2 - ( x - 1)^2 = 0

=>4x2+4x+1-x2+2x-1=0

=>3x2+6x=0

=>3x(x+2)=0

=>3x=0 hoặc x+2=0

=>x=0 hoặc x=-2

 

 

26 tháng 8 2016

a) \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\\ =>4x^2+12x+9-4x^2+4=49\\=>12x+13=49\\ =>12x=36\\ =>x=3\)

b) \(16x^2-\left(4x-5\right)^2=15\\ =>16x^2-16x^2+40x-25=15\\ =>40x-25=15\\ =>40x=40\\ =>x=1\)

c) \(\left(2x+1\right)^2-\left(x-1\right)^2=0\\ =>4x^2+4x+1-x^2+2x-1=0\\ =>3x^2+6x=0\\ =>3x\left(x+2\right)=0\\ =>\left[\frac{3x=0}{x+2=0}\right]=>\left[\frac{x=0}{x=-2}\right]\)

31 tháng 7 2019

\(b;\left(x+1\right)^2=x+1\)

\(\Rightarrow\left(x+1\right)^2-x-1=0\)

\(\Rightarrow\left(x+1\right)^2-\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x+1-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+1-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)