K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

a) 5x - 15y = 5(x - 3y)

b) \(\dfrac{3}{5}\)x2 + 5x4 - x2 - y

= \(\dfrac{3}{5}\)x2 + 5x2.x2 - x2 - y

= x2(\(\dfrac{3}{5}\) + 5x2 -1) - y

c) 14x2y2 - 21xy2 + 28x2y

= 7xy.xy - 7xy.3y + 7xy.4x

= 7xy(xy - 3y + 4x)

= 7xy[(xy - 3y) + 4x]

= 7xy[y(x - 3) +4x]

d) \(\dfrac{2}{7}x\)(3y - 1) - \(\dfrac{2}{7}y\)(3y - 1)

= (3y - 1).(\(\dfrac{2}{7}x\) - \(\dfrac{2}{7}y\) )

= (3y - 1).[\(\dfrac{2}{7}\)(x - y)]

e) x3 - 3x2 + 3x - 1

= x2.x - 3x.x + 3.x - 1

= x(x2-3x+3) - 1

g) 27x3 + \(\dfrac{1}{8}\)

= (3x)3 + \(\left(\dfrac{1}{2}\right)^3\)

= (3x + \(\dfrac{1}{2}\)).(9x2 - \(\dfrac{3}{2}\)x + \(\dfrac{1}{4}\))

h) (x+y)3 - (x-y)3

= 2(3x2y) + 2y3

f) (x+y)2 - 4x2

= -3x2 + y(2x + y)

24 tháng 9 2018

h,f ?????

giải rõ hơn nha

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

17 tháng 10 2017

$a)$ \(x^{12}:\left(-x\right)^6\)

\(=x^{12}:x^6\)

\(=x^{12-6}\)

\(=x^6\)

$b) $ \(\left(-x\right)^7:\left(-x\right)^5\)

\(=\left(-x\right)^{7-5}\)

\(=\left(-x\right)^2\)

\(=x^2\)

$c)$ \(5x^2y^4:10x^2y\)

\(=\dfrac{1}{2}y^3\)

$e)$ \(\left(-xy\right)^{14}:\left(-xy\right)^7\)

\(=\left(-xy\right)^{14-7}\)

\(=\left(-xy\right)^7\)

Các câu còn lại tương tự nha bạn!

7 tháng 8 2018

a) \(\dfrac{1}{8}x^3y^3-27=\left(\dfrac{1}{2}xy\right)^3-3^3=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{1}{4}x^2y^2+\dfrac{1}{6}xy+9\right)\)

b)\(\dfrac{8}{125}x^3+27y^3=\left(\dfrac{2}{5}x\right)^3+\left(3y\right)^3=\left(\dfrac{2}{5}x+3y\right)\left(\dfrac{4}{25}x^2-\dfrac{6}{5}xy+9y^2\right)\)

c) \(0.008x^6-27y^3=\left(0.2x^2\right)^3-\left(3y\right)^3=\left(0.2x^2-3y\right)\left(0.04x^4+\dfrac{3}{5}x^2y+9y^2\right)\)

d)\(\left(2x+y\right)^3-\left(x-y\right)^3=\left(2x+y-x+y\right)[\left(2x+y\right)^2+\left(2x+y\right)\left(x-y\right)+\left(x-y\right)^2]\\ =\left(x+2y\right)\left(4x^2+4xy+y^2+2x^2-2xy+xy-y^2+x^2-2xy+y^2\right)\\ =\left(x+2y\right)\left(6x^2+xy+y^2\right)\)

7 tháng 8 2018

Bài 1:

a) \(\dfrac{1}{8}x^3y^3-27\)

\(=\left(\dfrac{1}{2}xy\right)^3-3^3\)

\(=\left(\dfrac{1}{2}xy-3\right)\left[\left(\dfrac{1}{2}xy\right)^2+\dfrac{1}{2}xy.3+3^2\right]\)

\(=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{1}{4}xy+\dfrac{3}{2}xy+9\right)\)

\(=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{7}{4}xy+9\right)\)

b) \(\dfrac{8}{125}x^3+\dfrac{1}{8}y^3\)

\(=\left(\dfrac{2}{5}x\right)^3+\left(\dfrac{1}{2}y\right)^3\)

\(=\left(\dfrac{2}{5}x+\dfrac{1}{2}y\right)\left[\left(\dfrac{2}{5}x\right)^2-\dfrac{2}{5}x.\dfrac{1}{2}y+\left(\dfrac{1}{2}y\right)^2\right]\)

\(=\left(\dfrac{2}{5}x+\dfrac{1}{2}y\right)\left(\dfrac{4}{25}x-\dfrac{1}{5}xy+\dfrac{1}{4}y\right)\)

c) \(0.008x^6-27y^3\)

\(=\left(\dfrac{1}{5}x^2\right)^3-\left(3y\right)^3\)

\(=\left(\dfrac{1}{5}x^2-3y\right)\left[\left(\dfrac{1}{5}x^2\right)^2+\dfrac{1}{5}x^2.3y+\left(3y\right)^2\right]\)

\(=\left(\dfrac{1}{5}x^2-3y\right)\left(\dfrac{1}{25}x^4+\dfrac{3}{5}x^2y+9y^2\right)\)

d) \(\left(2x+y\right)^3-\left(x-y\right)^3\)

\(=\left[\left(2x+y\right)-\left(x-y\right)\right]\left[\left(2x+y\right)^2+\left(2x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=\left(2x+y-x+y\right)\left(4x^2+4xy+y^2+2x^3-2xy+xy-y^2+x^2-2xy+y^2\right)\)

\(=\left(x-2y\right)\left(4x^2+2x^3+xy\right)\)

15 tháng 12 2016

giúp mk vskhocroi

20 tháng 12 2016

bài 1: ... phá hết ra

bài 2

câu a, tách -2x^2 thành -x^2-x^2 rồi tự giải quyết

câu b, thêm bớt 1 để tạo hằng đẳng thức

câu c, đổi z-x thành -x-z

câu d là hằng đẳng thức đó má nội

mình rất muốn làm hết nhưng cái tật lười nó ko cho mình làm, mong bạn thông cảm

23 tháng 7 2018

a ) \(\left(5x+2y\right)^2=25x^2+20xy+4y^2\)

b ) \(\left(-3x+2\right)^2=9x^2-12x+4\)

c ) \(\left(\dfrac{2}{3}x+\dfrac{1}{3}y\right)^2=\dfrac{4}{9}x^2+\dfrac{4}{9}xy+\dfrac{1}{9}y^2\)

d ) \(\left(2x-\dfrac{5}{2}y\right)^2=4x^2-10xy+\dfrac{25}{4}y^2\)

e ) \(\left(x+\dfrac{4}{3}y^2\right)^2=x^2+\dfrac{8}{3}xy^2+\dfrac{16}{9}y^4\)

f ) \(\left(2x^2+\dfrac{5}{3}y\right)^2=4x^4+\dfrac{20}{3}x^2y+\dfrac{25}{9}y^2\)

Câu 1:

a: =(y-3)(x^2-16)

=(x-4)(x+4)(y-3)

b: \(=\left(2x+1\right)^2-y^2\)

\(=\left(2x+1+y\right)\left(2x+1-y\right)\)

23 tháng 4 2021

Bài 1 : 

a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)

b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)

23 tháng 4 2021

Bài 2 : tự kết luận nhé, ngại mà lười :( 

a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)

\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)

\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)

\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)

b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)

\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)

\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)

\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)

Vậy phương trình có vô số nghiệm 

c, \(\left|2x-3\right|=4\)

Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)

Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)

d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)

Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)

ĐỀ KIỂM TRA HKI:NĂM HỌC:2016_2017MÔN:TOÁNBài 1:Thực hiện phép tínha) 3x2 (x3 + 3x2 - 2x + 1) - 3x3b) (x - 4)(2x + 3)Bài 2:Phân tích các đa thức sau thành nhân tửa) 5x3 + 10x2 + 5xb) x(2x - 7) - 6x + 21c) x2 + 2xz - 49 + z2d) x2 + 10x + 21Bài 3:Tìm xa) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15b) 3x(x - 5) - 6084(x - 5) = 0Bài 4:a) Sắp xếp đa thức theo lũy thừa giảm dần của biến rồi làm tính chia:(2x4 + 15x2 - 13x3 - 3 + 11x) : (x2 - 4x - 3)b)...
Đọc tiếp

ĐỀ KIỂM TRA HKI:

NĂM HỌC:2016_2017

MÔN:TOÁN

Bài 1:Thực hiện phép tính

a) 3x2 (x3 + 3x2 - 2x + 1) - 3x3

b) (x - 4)(2x + 3)

Bài 2:Phân tích các đa thức sau thành nhân tử

a) 5x3 + 10x2 + 5x

b) x(2x - 7) - 6x + 21

c) x2 + 2xz - 49 + z2

d) x2 + 10x + 21

Bài 3:Tìm x

a) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15

b) 3x(x - 5) - 6084(x - 5) = 0

Bài 4:

a) Sắp xếp đa thức theo lũy thừa giảm dần của biến rồi làm tính chia:

(2x4 + 15x2 - 13x3 - 3 + 11x) : (x2 - 4x - 3)

b) Tính:

\(\frac{x+2}{x+3}\)+\(\frac{1-x}{x+3}\) - \(\frac{6x}{\left(x-3\right)\left(x+3\right)}\)

c) Chứng minh biểu thức sau không phụ thuộc vào biến x và y:

\(\frac{y}{x-y}\) - \(\frac{x^3-xy^2}{x^2+y^2}\)\(\left[\frac{x}{\left(x-y\right)^2}-\frac{y}{x^2-y^2}\right]\)

Bài 5:

Cho hình bình hành ABCD có BC =2AB và Â=600 .Gọi E,F theo thứ tự là trung điểm của BC và AD. Gọi I là điểm đối xứng với A qua B.

a) Tứ giác ABEF là hình gì ? Vì sao ?

b) Chứng minh tam giác ADI là tam giác đều .

c) Tứ giác AIEF là hình gì ? Vì sao ?

d) Tứ giác BICD là hình gì ? Vì sao ?

...............................................................HẾT.............................................................

 

3
20 tháng 12 2016

bạn à. ko có bài 1 điểm à

21 tháng 12 2016

công nhận chẳng thấy bài 1đ đâu.

16 tháng 4 2018

\(\text{a) }\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\\ \Leftrightarrow4\left(5x^2-3x\right)+5\left(3x+1\right)< 10x\left(2x+1\right)-15\\ \Leftrightarrow20x^2-12x+15x+5< 20x^2+10x-15\\ \Leftrightarrow20x^2+3x-20x^2-10x< -15-5\\ \Leftrightarrow-7x< -20\\ \Leftrightarrow x>\dfrac{20}{7}\)

Vậy bất phương trình có nghiệm \(x>\dfrac{20}{7}\)

\(\text{b) }\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\\ \Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)\ge4x\left(1-3x\right)-15x\\ \Leftrightarrow20x-80-12x^2-6x\ge4x-12x^2-15x\\ \Leftrightarrow-12x^2+14x+12x^2+11x\ge80\\ \Leftrightarrow25x\ge80\\ \Leftrightarrow x\ge\dfrac{16}{5}\)

Vậy bất phương trình có nghiệm \(x\ge\dfrac{16}{5}\)

\(\text{c) }\left(x+3\right)^2\le x^2-7\\ \Leftrightarrow x^2+6x+9\le x^2-7\\ \Leftrightarrow x^2+6x-x^2\le-7-9\\ \Leftrightarrow6x\le-16\\ \Leftrightarrow x\le-\dfrac{8}{3}\)

Vậy bất phương trình có nghiệm \(x\le-\dfrac{8}{3}\)