K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

\(B=3\left(1+3\right)+...+3^{99}\left(1+3\right)=4\left(3+...+3^{99}\right)⋮2\)

22 tháng 12 2021

B=3(1+3)+...+399(1+3)=4(3+...+399)2

22 tháng 12 2021

bạn ghi lại đề đi bạn

26 tháng 9 2015

a) 5+52+53+54+...+5100

= (5+52)+(53+54)+...+(599+5100)

= 30+52.(5+52)+...+598.(5+52)

= 30+52.30+...+598.30

= 30.(1+52+...+598)

Vì 30 chia hết cho 10

=> 30.(1+52+...+598) chia hết cho 10

=> 5+52+53+...+5100 chia hết cho 10

21 tháng 5 2015

Cậu search mạng chứ gì

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3

21 tháng 5 2015

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3

29 tháng 9 2015

Bài 1 : 

Ta có : 3a + 3b và a + 2b đều chia hết cho 3

=> ( 3a + 3b ) - ( a + 2b ) chia hết cho 3

=> 2a + b chia hết cho 3 ( đpcm )

Bài 2 : 

Mình có sách có bài này nhưng mà chưa học nên cũng không hiểu . Nếu bạn cần thì cứ nói với mình mình sẽ giúp

11 tháng 4 2018

hayyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

13 tháng 9 2015

up từng bài thôi,nhiều thế ko thánh nào làm cho đâu.thách nhau ak

7 tháng 10 2015

Chứng minh rằng:
a) 3 + 32 +.....+ 31998 

 = (3 + 32)+(33+34) +(35+36) .....+ (31997+31998 )

            có 1998: 2 = 999 nhóm 

= (3 + 32) + 32.(3 + 32) +34.(3 + 32) .....+ 31996(3 + 32)

= 12 + 32.12 +34.12 +....+ 31996.12

= 12( 1+32+34+.......+31996)  chia hết cho 12
b) 3 + 3+....+ 31998 

= (3 + 3+33) + (34 + 3+36) + .. + (31996 + 31997 +31998)  có 1998 : 3 = 666 nhóm

= (3 + 3+33) + 33.(3 + 3+33)+ ...+31995.(3 + 3+33)

= 39 +33.39 + .....+31995.39

= 39(1+33+....+31995) chia hết cho 39

c) 3 + 3+.....+ 3100 chia hết cho 120

nhóm mỗi nhóm 4 số hạng tương tự như hai câu trên ta được thừa số chung là 120

20 tháng 7 2016

gọi a=3p+r

b=3q+r

xét a-b= (3p+r)-(3q+r)

=3p + r - 3q - r

=3p+3q =3.(p+q) chia hết cho 3

các câu sau làm tương tự

20 tháng 7 2016

ủng hộ mik nha

29 tháng 12 2016

1. Tính tổng:

 Số số hạng có trong tổng là:

 (999-1):1+1=999 (số)

Số cặp có là:

 999:2=499 (cặp) và dư một số đó là số 500

Bạn hãy gộp số đầu và số cuối:

 (999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400

Vậy tổng S1 = 50400

Mih sẽ giải tiếp nha

29 tháng 12 2016

Số tự nhiên a sẽ chia hết cho 4 vì:

 36+12=48 sẽ chia hết co 4

Số a ko chia hết cho 9 vì:

 4+8=12 ko chia hết cho 9

16 tháng 10 2021

\(B=3+3^2+3^3+....+3^{120}\)

a, Ta thấy : Cách số hạng của B đều chi hết cho 3 

\(B=3+3^2+3^3+....+3^{120}⋮3\)

\(b,B=3+3^2+3^3+....+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{119}+3^{120}\right)\)

\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(B=3.4+3^3.4+...+3^{119}.4\)

\(B=4\left(3+3^3+...+3^{199}\right)\)

Có : \(B=4\left(3+3^3+...+3^{199}\right)⋮4\)

\(\Rightarrow B⋮4\)

\(c,B=3+3^2+3^3+....+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)

\(B=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{118}\left(3+3^2\right)\)

\(B=13+3^2.13+...+3^{118}.13\)

\(B=13\left(3^2+3^4+...+3^{118}\right)\)

Có : \(B=13\left(3^2+3^4+...+3^{118}\right)⋮13\)

\(\Rightarrow B⋮13\)

28 tháng 11 2024

lạnh quá đừng ra đề nx