Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là giao điểm của BM và CN. Ta có:
Diện tích tam giác ABC = 1/2 * AB * AC = 1/2 * 8 cm * 12 cm = 48 cm^2
Theo định lí Menelaus, ta có:
(BH/HA) * (AN/NC) * (CM/MB) = 1
Thay giá trị vào ta được:
(BH/HA) * (4/8) * (5/7) = 1
Suy ra: BH/HA = 14/15
Do đó, AH = AB - BH = 8 cm - (14/15)*8 cm = 8/15 cm
Tương tự, ta có: CH = 12/15 cm
Áp dụng công thức diện tích tam giác bằng nửa tích chất của đường cao, ta có:
Diện tích tam giác AMN = 1/2 * AM * NH = 1/2 * (AB - BM) * AH = 1/2 * (8 cm - 5 cm) * 8/15 cm = 8/15 cm^2
Vậy diện tích hình tam giác AMN là 8/15 cm^2.
Cho tam giác MNP có S = 84; a =13; b = 14; c = 15. Độ dài bán kính đường tròn ngoại tiếp của tam giác trên là?
A. 8,125
B. 130
C. 8
D. 8,5
C nha bn
Do tam giác ABC đều nên tâm I cũng là trọng tâm tam giác. Suy ra IE=r, IC=2r và
\(CE=\sqrt{IC^2-IE^2}=r\sqrt{3}\Rightarrow AC=2CE=2r\sqrt{3}\)
Diện tích tam giác ABC là
\(S=\frac{1}{2}.3r.2r\sqrt{3}=3r^2\sqrt{3}=9\)
H�nh ?a gi�c TenDaGiac1: DaGiac[A, B, 3] H�nh ?a gi�c TenDaGiac1: DaGiac[A, B, 3] ???ng tr�n f: ???ng tr�n qua D v?i t�m I G�c ?: G�c gi?a A, C, D G�c ?: G�c gi?a A, C, D G�c ?: G�c gi?a A, C, D ?o?n th?ng a: ?o?n th?ng [A, B] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng b: ?o?n th?ng [B, C] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng c: ?o?n th?ng [C, A] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng d: ?o?n th?ng [C, D] ?o?n th?ng e: ?o?n th?ng [E, B] A = (-1.1, 0.5) A = (-1.1, 0.5) A = (-1.1, 0.5) B = (2.66, 0.5) B = (2.66, 0.5) B = (2.66, 0.5) ?i?m C: DaGiac[A, B, 3] ?i?m C: DaGiac[A, B, 3] ?i?m C: DaGiac[A, B, 3] ?i?m D: Trung ?i?m c?a A, B ?i?m D: Trung ?i?m c?a A, B ?i?m D: Trung ?i?m c?a A, B ?i?m E: Trung ?i?m c?a C, A ?i?m E: Trung ?i?m c?a C, A ?i?m E: Trung ?i?m c?a C, A ?i?m I: Giao ?i?m c?a d, e ?i?m I: Giao ?i?m c?a d, e ?i?m I: Giao ?i?m c?a d, e
u