\(\sqrt{3x-5}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

a) Để \(\sqrt{3x-5}\) có nghĩa thì

3x - 5 \(\ge\) 0 <=> 3x \(\ge\) 5 <=> x \(\ge\) \(\dfrac{5}{3}\)

b) Để \(\sqrt{\dfrac{-3}{4-5x}}\) có nghĩa thì

\(\dfrac{-3}{4-5x}\ge0\)

Do -3 < 0 nên \(\dfrac{-3}{4-5x}< 0\)

Khi và chỉ khi 4 - 5x < 0 <=> x > \(\dfrac{4}{5}\)

c) Để \(\sqrt{x^2-5x+4}\) = \(\sqrt{\left(x^2-x\right)-\left(4x-4\right)}=\sqrt{x\left(x-1\right)-4\left(x-1\right)}=\sqrt{\left(x-1\right)\left(x-4\right)}\) có nghĩa thì

\(\left(x-1\right)\left(x-4\right)\ge0\)

Ta có bảng xét dấu :

x (x-1) (x-4) (x-1)(x-4) 1 4 0 0 0 0 - + + - - + + - +

=> x \(\le1\) Hoặc x \(\ge4\)

e) Để \(\sqrt{2x-3}\) có nghĩa thì \(2x-3\ge0< =>2x\ge3\Leftrightarrow x\ge\dfrac{3}{2}\)

27 tháng 8 2017

a)\(\sqrt{-5x}\)có nghĩa khi -5x>=0 hay x<=0

b)\(\sqrt{4-x}\) có nghĩa khi 4-x>=0 hay x<=4

c)\(\sqrt{3x+7}\) có nghĩa khi 3x+7.=0 hay x>=-7/3

d)\(\dfrac{2}{x^2}\) có nghĩa khi 2/x^2>=0hay x>=\(\sqrt{2}\)

Căn thức có nghĩa \(\Leftrightarrow x^2-3\ge0\Rightarrow\sqrt{3}\le x\le-\sqrt{3}\)

\(\Leftrightarrow x^2-2x-3\ge0\)

\(\Leftrightarrow x\left(x+2\right)\ge0\)

\(\Leftrightarrow x^2+5x+6\ge0\)

3 tháng 7 2017

Bạn tìm điều kiện để cái trong căn lớn hơn bằng 0 la ok luôn mà

25 tháng 5 2018

Biểu thức có nghĩa khi biểu thức dưới dấu căn có nghĩa, hay nói cách khác là >= 0

câu e) biểu thức có nghĩa khi mẫu khác 0, nghĩa là \(\sqrt{x^2}-5x+6\) khác 0, từ đó biến đổi như giải phương trình rồi tìm x

NV
1 tháng 3 2019

a/ \(x^2+4x-5>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -5\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}2x-1\ge0\\x-\sqrt{2x-1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\\left\{{}\begin{matrix}x>0\\x^2>2x-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}x^2-3\ge0\\1-\sqrt{x^2-3}\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}\ge0\\-2x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn

e/ \(\left\{{}\begin{matrix}3x-1\ge0\\5x-3\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\ge\dfrac{3}{5}\end{matrix}\right.\) \(\Rightarrow x\ge\dfrac{3}{5}\)

27 tháng 5 2018

1)

a) \(6=\sqrt{36}< \sqrt{40}\)

b) \(3=\sqrt{9}< \sqrt{10}\)

c) \(2\sqrt{3}< 2\sqrt{4}=4\)

d) \(3\sqrt{2}=\sqrt{18}< \sqrt{36}=6\)

e) \(7=\sqrt{49}< \sqrt{50}\)

2)

a) \(x\ge0\)

b) \(-2x+1\ge0\Leftrightarrow-2x\ge-1\Leftrightarrow x\le\dfrac{1}{2}\)

c) \(5-a\ge0\Leftrightarrow a\le5\)

d) \(2x-3>0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)

e) \(-3< x< 1\)

f) \(-3x\ge-4\Leftrightarrow x\le\dfrac{4}{3}\)

g) \(x^2-2x-3\ge0\Leftrightarrow\left(x+1\right)\left(x-3\right)\ge0\Leftrightarrow-1\le x\le3\)

27 tháng 7 2018

\(\sqrt{2x+3}\) có nghĩa khi 

\(2x+3\ge0\)

\(\Leftrightarrow2x\ge-3\)

\(\Leftrightarrow x\ge-\frac{3}{2}\)

Vậy .....

27 tháng 7 2018

1) \(\sqrt{-3x+1}\) có nghĩa \(\Leftrightarrow\sqrt{-3x+1}\ge0\)

\(\Leftrightarrow-3x+1\ge0\Leftrightarrow-3x\ge-1\Leftrightarrow x\le\frac{1}{3}\)

2) \(\sqrt{2x+3}\) có nghĩa \(\Leftrightarrow\sqrt{2x+3}\ge0\Leftrightarrow2x+3\ge0\Leftrightarrow2x\ge-3\Leftrightarrow x\ge\frac{-3}{2}\)

3) \(\sqrt{\frac{-1}{2x+1}}\) có nghĩa \(\Leftrightarrow\sqrt{\frac{-1}{2x+1}}\ge0\Leftrightarrow\frac{-1}{2x+1}\ge0\Leftrightarrow2x+1< 0\Leftrightarrow2x< -1\Leftrightarrow x< \frac{-1}{2}\)