Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x² + 10x + 25 = (x + 5)^2
b) 16x² – 8x + 1 = (4x - 1)^2
c) 4x² + 12xy + 9y² = (2x + 3y)^2
d) x³ + 3x² + 3x + 1 = (x + 1)^3
e)27y³ – 9y² + y - 1/27 = (3y - 1/3)^3
g) 8x6 + 12x4y + 6x2y2 + y3 = (2x^2 + y)^3
a) \(x^2+10x+25=x^2+2\cdot5\cdot x+5^2=\left(x+5\right)^2\)
b) \(16x^2-8x+1=\left(4x\right)^2-2\cdot4x+1=\left(4x-1\right)^2\)
c) \(4x^2+12xy+9y^2=\left(2x\right)^2+2\cdot2x\cdot3y+\left(3y\right)^2=\left(2x-3y\right)^2\)
d) \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
\(a.P(x)=x^7-80x^6+80x^5-80x^4+....+80x+15\)
\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-....-x^2+79x+x+15\)
\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-....-x(x-79)+x+15\)
\(=(x-79)(x^6-x^5+x^4-....-x)+x+15\)
Thay x = 79 vào biểu thức trên , ta có
\(P(79)=(79-79)(79^6-79^5+79^4-...-79)+79+15\)
\(=0+79+15\)
\(=94\)
Vậy \(P(x)=94\)khi x = 79
\(b.Q(x)=x^{14}-10x^{13}+10x^{12}-.....+10x^2-10x+10\)
\(=x^{14}-9x^{13}-x^{13}+9x^{12}+.....-x^3+9x^2+x^2-9x-x+10\)
\(=x^{13}(x-9)-x^{12}(x-9)+.....-x^2(x-9)+x(x-9)-x+10\)
\(=(x-9)(x^{13}-x^{12}+.....-x^2+x)-x+10\)
Thay x = 9 vào biểu thức trên , ta có
\(Q(9)=(9-9)(9^{13}-9^{12}+.....-9^2+9)-9+10\)
\(=0-9+10\)
\(=1\)
Vậy \(Q(x)=1\)khi x = 9
\(c.R(x)=x^4-17x^3+17x^2-17x+20\)
\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)
\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)
\(=(x-16)(x^3-x^2+x)-x+20\)
Thay x = 16 vào biểu thức trên , ta có
\(R(16)=(16-16)(16^3-16^2+16)-16+20\)
\(=0-16+20\)
\(=4\)
Vậy \(R(x)=4\)khi x = 16
\(d.S(x)=x^{10}-13x^9+13x^8-13x^7+.....+13x^2-13x+10\)
\(=x^{10}-12x^9-x^9+12x^8+.....+x^2-12x-x+10\)
\(=x^9(x-12)-x^8(x-12)+....+x(x-12)-x+10\)
\(=(x-12)(x^9-x^8+....+x)-x+10\)
Thay x = 12 vào biểu thức trên , ta có
\(S(12)=(12-12)(12^9-12^8+....+12)-12+10\)
\(=0-12+10\)
\(=-2\)
Vậy \(S(x)=-2\)khi x = 12
Hình như đây là toán lớp 7 có trong phần trắc nghiệm của thi HSG huyện
Chúc bạn học tốt , nhớ kết bạn với mình
\(a,=\left(x+\dfrac{5}{2}\right)^2\\ b,=\left(2x+3y\right)^2\\ c,=a^2+b^2+c^2+2ab-2bc-2ac\\ d,=\left(4x-1\right)^2\\ e,=a^2+b^2+c^2+2ab+2bc+2ac\\ f,=a^2+b^2+c^2-2ab+2bc-2ac\)
Bài giải:
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1818 = (2x)3 – (1212)3 = (2x - 1212)[(2x)2 + 2x . 1212 + (1212)2]
= (2x - 1212)(4x2 + x + 1414)
d) 125125x2 – 64y2 = (15x)2(15x)2- (8y)2 = (1515x + 8y)(1515x - 8y)
a) x2 + 6x + 9 = x2 + 2.3x + 32 = (x + 3)2
b) 10x – 25 – x2 = -(x2 -10x + 25) = -(x2 -2.5x + 52)
= -(x – 5)2
c) 8x3 – 1/8= (2x)3 – ( 1/2)3 = (2x – 1/2)[(2x)2 + 2x . 1/2+ (1/2)2]
= (2x – 1/2)(4x2 + x + 1/4)
d) 1/25x2 – 64y2 = (1/5 x)2– (8y)2 = ( 1/5 x + 8y)(1/5x- 8y)
a) \(x^2+6x+9\)
\(=\left(x+3\right)^2\)
\(=\left(x+3\right)\left(x+3\right)\)
b) \(10x-25-x^2\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x-5\right)^2\)
\(=-\left(x-5\right)\left(x-5\right)\)
c) \(8x^3-\frac{1}{8}\)
\(=\left(2x\right)^3-\left(\frac{1}{2}\right)^3\)
\(=\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)
d) \(\frac{1}{25}x^2-64y^2\)
\(=\left(\frac{1}{5}x\right)^2-\left(8y\right)^2\)
\(=\left(\frac{1}{5}x-8y\right)\left(\frac{1}{5}x+8y\right)\)
a) \(x^2+6x+9=x^2+2.3.x+3^2\)\(=\left(x+3\right)^2\)
b)\(10x-25-x^2=-\left(x^2-10x+25\right)\)\(=-\left(x^2-2.5.x+5^2\right)=-\left(x+5\right)^2\)
c)\(8x^3-\frac{1}{8}=\left(2x\right)^3-\left(\frac{1}{2}\right)^3\)\(=\left(2x-\frac{1}{2}\right)\left(4x+x+\frac{1}{4}\right)\)
d)\(\frac{1}{25}x^2-64y^2=\left(\frac{1}{5}\right)^2-\left(8y\right)^2\)\(=\left(\frac{1}{5}-8y\right)\left(\frac{1}{5}+8y\right)\)
a, \(25+10x+x^2=5^2+2.5x+x^2=\left(5+x\right)^2\)
b, \(8x^3-\dfrac{1}{8}=\left(2x\right)^3-\left(\dfrac{1}{2}\right)^3=\left(2x-\dfrac{1}{2}\right)\left[\left(2x\right)^2+2x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
c, \(x^2-10x+25=x^2-2.5x+5^2=\left(x-5\right)^2\)
1. \(25+10x+x^2\\ \Leftrightarrow5^2+2\cdot5\cdot x+x^2\\ \Leftrightarrow\left(5+x\right)^2\\ \Leftrightarrow\left(5+x\right)\left(5+x\right)\)
2. \(8x^3-\dfrac{1}{8}\\ \Leftrightarrow\left(2x\right)^3-\left(\dfrac{1}{2}\right)^3\\ \Leftrightarrow\left(2x-\dfrac{1}{2}\right)\left[\left(2x\right)^2+2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]\\ \Leftrightarrow\left(2x-\dfrac{1}{2}\right)\left[4x^2+x+\dfrac{1}{4}\right]\)
3. \(x^2-10x+25\\ \Leftrightarrow x^2-2\cdot5\cdot x+5^2\\ \Leftrightarrow\left(x-5\right)^2\\ \Leftrightarrow\left(x-5\right)\left(x-5\right)\)