\(3^{x+2}+4\cdot3^{x+1}=7\cdot3^6\)

Câu 2: C...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Tìm x biết:

\(3^{x+2}+4\cdot3^{x+1}=7\cdot3^6\)

Câu 2: Cho \(\dfrac{a}{2014}=\dfrac{b}{2015}=\dfrac{c}{2016}.\)Chứng minh rằng: 4(a-b)*(b-c)=(c-a)^2

Câu 3: Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) (b,c,d khác 0; c-2d khác 0 ). Chứng minh rằng: \(\dfrac{\left(a-2b\right)^4}{\left(c-2d\right)^4}=\dfrac{a^4+2017b^4}{c^4+2017d^4}\)

Câu 4: Tìm các số nguyên x,y thỏa mãn:

\(|x-7|+|3-x|=\dfrac{12}{|y+1|+3}\)

Câu 5: Cho tam giác ABC có AB=AC, K là trung điểm của BC. Chứng minh rằng:

a, \(\Delta ABK=\Delta ACK\)

b, AK là phân giác của góc BAC và \(AK\perp BC\)

c, Gọi I là một điểm bất kỳ thuộc đoạn thẳng AK (I không trùng với A và K). Đường thẳng BI cắt AC tại M, Đường thẳng CI cắt AB tại N. Chứng minh : AN=AM

Câu 6: Cho tam giác ABC vuông tại A (AB<AC), BD là tia phân giác của góc ABC (\(D\in AC\)). Lấy điểm E trên BC sao cho BE=AB, từ E kẻ thêm \(EF\perp AB\left(F\in AB\right)\).

a, Chứng minh: \(\Delta ABD=\Delta EBD\)

b, Chứng minh: \(DE\perp BCvàEF//DA\)

c, Gọi I là trung điểm của DF. Trên tia đối của tia AD lấy điểm K sao cho DK=EF. Chứng minh rằng: 3 điểm E,I,K thẳng hàng.

Câu 7: Cho góc xOy nhọn có tia phân giác Ot. Trên cạnh Oy lấy hai điểm B,C sao cho OB<OC. Trên cạnh Ox lấy điểm A sao cho OA=OB, AC cắt Ot tại M

a, Chứng minh rằng: \(\Delta OAM=\Delta OBM\)

b, Tia BM cắt Ox tại D. Chừng minh rằng: OC=OD

c, Gọi I là trung điểm của đoạn CD. Chứng minh rằng 3 điểm O,M,I thẳng hàng

Câu 8: Có tồn tại số tự nhiên có ba chữ số \(\overline{abc}\) nào để tổng \(\overline{abc}+\overline{bca}+\overline{cab}\) là một số chính phương hay không ?

Help me!

1
1 tháng 1 2018

giúp tớ với thứ 4 nộp rồi help me!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

6 tháng 1 2018

1.

a.

\(\left(\dfrac{-4}{5}+\dfrac{2}{3}\right)\cdot\dfrac{7}{11}+\left(\dfrac{-1}{5}+\dfrac{1}{3}\right)\cdot\dfrac{7}{11}\\ =\dfrac{7}{11}\cdot\left(\dfrac{-4}{5}+\dfrac{2}{3}+\dfrac{-1}{5}+\dfrac{1}{3}\right) \\ =\dfrac{7}{11}\cdot\left[\left(\dfrac{-4}{5}+\dfrac{-1}{5}\right)+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\right]\\ =\dfrac{7}{11}\cdot\left[\left(-1\right)+1\right]\\ =\dfrac{7}{11}\cdot0\\ =0\)

b.

\(\left(-3^2\right)\cdot\left(\dfrac{3}{4}-0,25\right)-\left|-2\right|\\ =\left(-9\right)\cdot0,5-2\\ =-4,5-2\\ =-6,5\)

2.

\(y=f\left(x\right)=\left(m+1\right)x\\ \Rightarrow4=f\left(2\right)=\left(m+1\right)\cdot2\\ \Rightarrow m+1=2\\ \Leftrightarrow m=1\)

Tự

3.

a.

\(\left|x-\dfrac{2}{5}\right|=\dfrac{3}{4}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=\dfrac{3}{4}\\x-\dfrac{2}{5}=\dfrac{-3}{4}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{23}{20}\\x=\dfrac{-7}{20}\end{matrix}\right.\)

b.

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2y}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2y}{6}=\dfrac{x+2y-z}{5+6-4}=\dfrac{14}{7}=2\\ \Rightarrow\left\{{}\begin{matrix}x=10\\y=6\\z=8\end{matrix}\right.\)

Thực hiện phép tính \(\dfrac{2}{5}+\dfrac{1}{5}.\left(\dfrac{-3}{4}\right)=\dfrac{3}{5}.\left(\dfrac{-3}{4}\right)\) \(\left(-3\right)^2.\left(\dfrac{3}{4}-0,25\right)-\left(3\dfrac{1}{2}-1\dfrac{1}{2}\right)\) Tìm x biết \(x-1=\dfrac{3}{2}\) \(\dfrac{x}{8}=\dfrac{3}{4}\) \(-\dfrac{2}{3}:x=-\dfrac{5}{6}\) cho hàm số y=ax ( a\(\ne\)0) a) xác định a biết độ thị hàm số đi qua điểm M(1;3) b)Vẽ đồ thị vừa tìm được số học sinh tiên tiến...
Đọc tiếp

Thực hiện phép tính

\(\dfrac{2}{5}+\dfrac{1}{5}.\left(\dfrac{-3}{4}\right)=\dfrac{3}{5}.\left(\dfrac{-3}{4}\right)\)

\(\left(-3\right)^2.\left(\dfrac{3}{4}-0,25\right)-\left(3\dfrac{1}{2}-1\dfrac{1}{2}\right)\)

Tìm x biết

\(x-1=\dfrac{3}{2}\)

\(\dfrac{x}{8}=\dfrac{3}{4}\)

\(-\dfrac{2}{3}:x=-\dfrac{5}{6}\)

cho hàm số y=ax ( a\(\ne\)0)

a) xác định a biết độ thị hàm số đi qua điểm M(1;3)

b)Vẽ đồ thị vừa tìm được

số học sinh tiên tiến của 3 lớp 7A 7B 7C tỉ lệ với các số 8 7 9 . Hỏi mỗi lớp có bao nhiêu học sinh tiên tiến của lớp 7B ít hơn 7A là 2 học sinh

cho tam giác ABC có AB =AC tia phân giác của góc A cắt BC tại H chứng minh rằng

HB=HC

Tam giác ABH =tam giác ACH

cho tam giác ABC vuông tại A có AB=AC gọi K là trung điểm của BC

chứng minh tam giác AKB=tam giác AKC và AK vuông góc BC

từ C kẻ đường vuông góc với BC nó cắt AB tại E chứng minh RC//AK

1

Câu 5:

a: Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên H là trung điểm của BC

b: Xét ΔAKB và ΔAKC có

AK chung

KB=KC

AB=AC

Do đó: ΔAKB=ΔAKC

Câu 6:

Xét ΔAKB và ΔAKC có

AK chung

KB=KC

AB=AC

Do đó: ΔAKB=ΔAKC

3 tháng 12 2016

Câu 1:

Giải:

Ta có: \(15x=\left(-10\right)y=6z\Rightarrow\frac{15x}{30}=\frac{\left(-10\right)y}{30}=\frac{6z}{30}\Rightarrow\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}\)

Đặt \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k,y=-3k,z=5k\)

\(xyz=-30000\)

\(\Rightarrow2k\left(-3\right)k5k=-30000\)

\(\Rightarrow\left(-30\right).k^3=-30000\)

\(\Rightarrow k^3=1000\)

\(\Rightarrow k=10\)

\(\Rightarrow x=20;y=-30;z=50\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(20;-30;50\right)\)

Câu 3:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)

\(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\)

Tương tự ta có b = c, c = d, d = a

\(\Rightarrow a=b=c=d\)

\(\Rightarrowđpcm\)

3 tháng 12 2016

3, áp dụng tính chất dãy tỉ số bằng nhau:

=>\(\frac{a}{3.b}\)=\(\frac{b}{3.c}\)=\(\frac{c}{3.d}\) =\(\frac{d}{3.a}\) =\(\frac{a+b+c+d}{3\left(b+c+a+d\right)}\) =\(\frac{1}{3}\)

\(\Rightarrow\)\(\frac{a}{3b}\)=\(\frac{1}{3}\) =>\(\frac{1.b}{3.b}\) =\(\frac{b}{3.b}\) =>\(\frac{a}{3b}\) =\(\frac{b}{3b}\) =>...a=b (1)

\(\frac{c}{3d}\)=\(\frac{1}{3}\) =>\(\frac{1.d}{3.d}\) =\(\frac{d}{3d}\) =>\(\frac{c}{3d}\) =\(\frac{d}{3d}\) =>...c=d (2)

\(\frac{b}{3c}\) =\(\frac{1}{3}\) =>\(\frac{1.c}{3.c}\) =\(\frac{c}{3c}\)=>\(\frac{b}{3c}\) =\(\frac{c}{3c}\)=>..b=c (3)

\(\frac{d}{3a}\)=\(\frac{1}{3}\) =>\(\frac{1.a}{3.a}\) =\(\frac{a}{3a}\)=>\(\frac{d}{3a}\) =\(\frac{a}{3a}\)...=>d=a (4)

từ (1).(2).(3)(4)=>a=b=c=d(dpcm)

 
Câu 1:thực hiện tínhC=(1-\(\frac{1}{3}\))(1-\(\frac{1}{6}\))(1-\(\frac{1}{10}\))(1-\(\frac{1}{15}\)).....(1-\(\frac{1}{210}\))Câu 2:tìm xa)   (x-2)(x+3) <0b)   3x+2+4.3x+1+3x-1Câu 3:Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\).Chứng minh rằng :\(\frac{ab}{cd}\)=\(\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\)Câu 4: Cho 3 số x<y<z thỏa mãn :x+y+z=51.Biết rằng 3 tổng của 2 trong 3 số đã cho tỉ với 9 ,12 ,13 .Tìm x,y,zCâu 5:  Cho tam giác ABC...
Đọc tiếp

Câu 1:thực hiện tính

C=(1-\(\frac{1}{3}\))(1-\(\frac{1}{6}\))(1-\(\frac{1}{10}\))(1-\(\frac{1}{15}\)).....(1-\(\frac{1}{210}\))

Câu 2:tìm x

a)   (x-2)(x+3) <0

b)   3x+2+4.3x+1+3x-1

Câu 3:Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\).Chứng minh rằng :\(\frac{ab}{cd}\)=\(\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\)

Câu 4: Cho 3 số x<y<z thỏa mãn :x+y+z=51.Biết rằng 3 tổng của 2 trong 3 số đã cho tỉ với 9 ,12 ,13 .Tìm x,y,z

Câu 5:  Cho tam giác ABC vuông cân tại A.Gọi D là một điểm bất kì trên cạnh BC (D khác B và C ).Vẽ hai tia Bx;Cy vuông góc với BC và nằm trên cùng một nửa mặt phẳng có bờ chứa BC và điểm  A.Qua A vẽ đường thẳng vuông góc với AD cắt Bx tại M và cắt Cy tại N.Chứng minh :

a) \(\Delta\)AMB =\(\Delta\)ADC

b) A là trung điểm của MN

c) chứng minh \(\Delta\)vuông cân

Câu 6:Cho\(\Delta\)ABC cân tại A=100 độ .Gọi M là 1 điểm nằm trong tam giác sao cho góc MBC =10 độ ;góc MCB=20 độ .Tính góc AMB

 

0

Bài 1: 

a: \(=\dfrac{15-32}{40}\cdot10+\dfrac{1}{4}\)

\(=\dfrac{-17}{4}+\dfrac{1}{4}=-\dfrac{16}{4}=-4\)

b: \(=\left(\dfrac{9}{6}-\dfrac{5}{6}\right)^2+\dfrac{5}{2}+\dfrac{2}{3}\)

\(=\dfrac{4}{9}+\dfrac{5}{2}+\dfrac{2}{3}\)

\(=\dfrac{8}{18}+\dfrac{45}{18}+\dfrac{12}{18}=\dfrac{65}{18}\)

1) Tính \(A=\dfrac{1}{13}+\dfrac{3}{13.23}+\dfrac{3}{23.33}+...+\dfrac{3}{2003.2013}\) \(B=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{2018}-1\right)\) 2) Tìm x biết: a) \(x^2-2x-15=0\) b) \(\dfrac{3}{\left(x+2\right).\left(x+5\right)}+\dfrac{5}{\left(x+5\right).\left(x+10\right)}+\dfrac{7}{\left(x+10\right).\left(x+17\right)}=\dfrac{x+1}{\left(x+2\right).\left(x+17\right)}\) 3) Cho \(\dfrac{a}{b}=\dfrac{d}{c}\) . Chứng...
Đọc tiếp

1) Tính

\(A=\dfrac{1}{13}+\dfrac{3}{13.23}+\dfrac{3}{23.33}+...+\dfrac{3}{2003.2013}\)

\(B=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{2018}-1\right)\)

2) Tìm x biết:

a) \(x^2-2x-15=0\)

b) \(\dfrac{3}{\left(x+2\right).\left(x+5\right)}+\dfrac{5}{\left(x+5\right).\left(x+10\right)}+\dfrac{7}{\left(x+10\right).\left(x+17\right)}=\dfrac{x+1}{\left(x+2\right).\left(x+17\right)}\)

3) Cho \(\dfrac{a}{b}=\dfrac{d}{c}\) . Chứng minh: \(\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)

4) Cho \(f\left(x\right)=x^{100}-x^{99}+...+x^2-x+1\)

\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)

Tính giá trị của hiệu \(f\left(x\right)-g\left(x\right)\) tại x=0,1

5) Cho tam giác ABC có \(\widehat{A}=\ge90\) ; \(M\in AB,N\in AC\)

Chứng minh: BC > MN

6) Cho tam giác ABC, M là trung điểm BC, biết \(\widehat{BAM}>\widehat{CAM}\) . So sánh B và C

2
21 tháng 3 2018

1)\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2017}{2018}\)

\(B=\dfrac{1}{2018}\)

2)a)\(x^2-2x-15=0\)

\(\Leftrightarrow x^2-2x+1-16=0\)

\(\Leftrightarrow\left(x-1\right)^2-16=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

3)\(\dfrac{a}{b}=\dfrac{d}{c}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a}{b}\cdot\dfrac{d}{c}=\dfrac{ad}{bc}\)

Lại có:\(\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a^2+d^2}{b^2+c^2}\)

\(\Rightarrow\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)

4)Ta có:\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)

\(g\left(x\right)=-x^{101}+\left(x^{100}-x^{99}+...+x^2-x+1\right)\)

\(g\left(x\right)=-x^{101}+f\left(x\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=f\left(x\right)+x^{101}-f\left(x\right)=x^{101}\)

Tại x=0 thì f(x)-g(x)=0

Tại x=1 thì f(x)-g(x)=1

24 tháng 3 2018

CHu làm cô liễu ko lo làm Mai báo cô

27 tháng 7 2018

1,

a, \(\left(x-\dfrac{1}{7}\right)^4=\left(x-\dfrac{1}{7}\right)^2\)

\(\Leftrightarrow\left(x-\dfrac{1}{7}\right)^4-\left(x-\dfrac{1}{7}\right)^2=0\)

\(\Leftrightarrow\left[\left(x-\dfrac{1}{7}\right)^2+x-\dfrac{1}{7}\right]\left[\left(x-\dfrac{1}{7}\right)^2-x+\dfrac{1}{7}\right]=0\)

\(\Leftrightarrow\left[x^2+\dfrac{1}{49}-\dfrac{2}{7}x+x-\dfrac{1}{7}\right]\left[x^2+\dfrac{1}{49}-\dfrac{2}{7}x-x+\dfrac{1}{7}\right]=0\)

\(\Leftrightarrow\left(x^2+\dfrac{5}{7}x-\dfrac{6}{49}\right)\left(x^2-\dfrac{9}{7}x+\dfrac{8}{49}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+\dfrac{5}{7}x-\dfrac{6}{49}=0\\x^2-\dfrac{9}{7}x+\dfrac{8}{49}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=\dfrac{8}{7}\end{matrix}\right.\)

Vậy...

b, \(\left|x+6,4\right|+\left|x+2,5\right|+\left|x+8,1\right|=4x\)

\(\Leftrightarrow x+6,4+x+2,5+x+8,1=4x\) với mọi x

\(\Leftrightarrow x+x+x-4x=-8,1-2,5-6,4\)

\(\Leftrightarrow-x=-17\)

\(\Leftrightarrow x=17\)

Vậy...