\(2^{x+1}.3^y=12^x\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2020

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

13 tháng 1 2020

câu a làm cách khác đi bạn

25 tháng 2 2018

team phế

25 tháng 2 2018

là sao

15 tháng 1 2018

\(\frac{1}{8}.16^n=2^n\)

\(\frac{16^n}{8}=2^n\)

\(\frac{\left(2^4\right)^n}{2^3}=2^n\)

\(\frac{2^{4n}}{2^3}=2^n\)

=> 23=24n:2n

23=23n

=> 3n=3

=> n=1

3 tháng 7 2019

a) \(2^m+2^n=2^{m+n}\)

\(\Leftrightarrow2^m+2^n=2^m.2^n\)

\(\Leftrightarrow2^m.2^n-2^m-2^n=0\)

\(\Leftrightarrow2^m\left(2^n-1\right)-\left(2^n-1\right)=1\)

\(\Leftrightarrow\left(2^m-1\right)\left(2^n-1\right)=1=1.1=\left(-1\right).\left(-1\right)\)

\(TH1:\hept{\begin{cases}2^m-1=1\\2^n-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=1\\n=1\end{cases}}\)

\(TH1:\hept{\begin{cases}2^m-1=-1\\2^n-1=-1\end{cases}}\Leftrightarrow m,n\in\left\{\varnothing\right\}\)

Vậy m = n = 1

3 tháng 7 2019

\(2^m-2^n=256\)

\(\Leftrightarrow2^n\left(2^{m-n}-1\right)=2^8\)

\(TH1:m-n< 2\)\(\Rightarrow\hept{\begin{cases}n=8\\m=9\end{cases}}\)

\(TH2:m-n\ge2\)

VP chứa toàn thừa số nguyên tố 2 nên VP chẵn.

*Xét VT: \(2^{m-n}-1\)lẻ vì \(m-n\ge2\)

Suy ra : VT lẻ, VP chẵn ( vô lí )

Vậy m = 9 , n = 8