K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

Lời giải:

Ta có:

\(A=x^2-4x+6+y^2-8y\)

\(A=(x^2-4x+4)+(y^2-8y+16)-14\)

\(A=(x-2)^2+(y-4)^2-16\)

Ta thấy: \(\forall x,y\in\mathbb{R}\Rightarrow \left\{\begin{matrix} (x-2)^2\geq 0\\ (y-4)^2\geq 0\end{matrix}\right.\)

\(\Rightarrow A\geq 0+0-16=-16\)

Vậy GTNN của $A$ là $-16$ khi \(x=2;y=4\)

29 tháng 7 2018

\(A=x^2-4x+6+y^2-8y=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14=\left(x-2\right)^2+\left(y-4\right)^2-14\ge14\)

A min = -14 tại x=2 ; y=4

22 tháng 6 2015

1)P(x)=4x-x2+1=-(x2-4x+4)+5=-(x-2)2+5

Do (x-2)2>0

=>-(x-2)2<0

=>P(x)=-(x-2)2+5<5

=>Max P=5<=>(x-2)2=0<=>x=2

2)A(x)=x2-4x+y2-8y+6=(x2-4x+4)+(y2-8y+16)-14

=(x-2)2+(y-4)2-14

Do (x-2)2>0

(y-4)2>0

=>(x-2)2+(y-4)2>0

=>A(x)=(x-2)2+(y-4)2-14>-14

=>Min A=-14<=>(x-2)2=0 và (y-4)2=0<=>x=2 và y=4

22 tháng 6 2015

P(x) = 4x - x^2 + 1

         = - ( x^2 - 4x + 10) 

       =  -( x^2 - 2.x.2 + 4 + 6)

       = -(  x- 2 )^2 - 6 

Vậy GTLN của p là -6 tại x  - 2 = 0 => x = 2 

VẬy x = 2 thì .... 

B2)

 A(x) = x^2 - 4x + y^2 - 8y + 6 

     = x^2 - 2.x . 2 + 4 + y^2 - 2.y.4 + 16 - 14

     =( x - 2)^2 + (y - 4)^2 - 14 

VẬy GTNN của bt là -14 

              khi x - 2 = 0 => x = 2 

                    y - 4= 0 => y=4 

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

19 tháng 9 2020

a) Đặt \(A=x^2-2x+1\)

    Ta có: \(A=x^2-2x+1=\left(x-1\right)^2\)

     Vì \(\left(x-1\right)^2\ge0\forall x\)

    \(\Rightarrow A_{min}=0\)

    Dấu "=" xảy ra khi: \(x-1=0\)

                            \(\Leftrightarrow x=1\)

Vậy \(A_{min}=0\)\(\Leftrightarrow\)\(x=1\)

19 tháng 9 2020

b) Ta có: \(M=x^2-3x+10\)

        \(\Leftrightarrow M=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)

        \(\Leftrightarrow M=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)

    Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\forall x\)

     \(\Rightarrow\)\(M_{min}=\frac{31}{4}\)

    Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\)

                            \(\Leftrightarrow x=\frac{3}{2}\)

Vậy \(M_{min}=\frac{31}{4}\)\(\Leftrightarrow\)\(x=\frac{3}{2}\)

23 tháng 4 2016

\(P=\left(x^2+2xy+y^2\right)-4x-4y+4+\left(4y^2-4y+1\right)+2010\)

     \(=\left(x+y\right)^2-4\left(x+y\right)+4+\left(2y-1\right)^2+2010\)

\(P=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\)  với mọi  \(x,y\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\left(x+y-2\right)^2=0\)  và  \(\left(2y-1\right)^2=0\)

                              \(\Leftrightarrow\)  \(x+y-2=0\)  và  \(2y-1=0\)

                              \(\Leftrightarrow\)  \(x=2-y\)  và  \(y=\frac{1}{2}\)

                              \(\Leftrightarrow\)  \(x=\frac{3}{2}\)  và  \(y=\frac{1}{2}\)

Vậy,  \(P_{min}=2010\)  \(\Leftrightarrow\)   \(x=\frac{3}{2};\)  và  \(y=\frac{1}{2}\)

7 tháng 6 2017

Bài 1 :

\(S=100^2-99^2+98^2-97^2+.....+2^2-1^2\)

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+....+\left(2^2-1^2\right)\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=1.\left(100+99\right)+1.\left(98+97\right)+...+1.\left(2+1\right)\)

\(=100+99+98+97+....+2+1\)

\(=\frac{100\left(100+1\right)}{2}=5050\)

Bài 2 :

\(x^2-4x+y^2-8y+6\)

\(=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)

\(=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\) có GTNN là - 14

Dấu "=" xảy ra <=> x = 2 ; y = 4

Vậy ...............

10 tháng 6 2018

(1981 x 1982 - 990) : (1980 x 1982 + 992)

=(1980 x 1982+1982 -990) : (1980 x 1982 +992)

=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)

=1

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

28 tháng 7 2018

a)  \(A=x^2+8x=x^2+8x+16-16=\left(x+4\right)^2-16\ge-16\)

Vậy MIN \(A=-16\)khi  \(x=-4\)

b)  \(B=x^2-4x+y^2-8y+6=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)

\(=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Vậy MIN   \(B=-14\) khi  \(x=2;\)\(y=4\)

28 tháng 9 2018

\(A=4x^2+y^2-12x+8y+28\)

\(=\left(4x^2-12x+9\right)+\left(y^2+8y+16\right)+3\)

\(=\left(2x-3\right)^2+\left(y+4\right)^2+3\ge3\)

Min  A = 3   khi: x = 3/2;  y = - 4