\(y= x^3-3x^2-2\) biết hệ số góc của tiếp tuyến với...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Câu 1:

\(y=x^3-3x^2-2\Rightarrow y'=3x^2-6x\)

Gọi hoành độ của M là \(x_M\)

Hệ số góc của tiếp tuyến của đồ thị (C) tại M bằng 9 tương đương với:

\(f'(x_M)=3x_M^2-6x_M=9\)

\(\Leftrightarrow x_M=3\) hoặc $x_M=-1$

\(\Rightarrow y_M=-2\) hoặc \(y_M=-6\)

Vậy tiếp điểm có tọa độ (3;-2) hoặc (-1;-6)

Đáp án B

Câu 2:

Gọi hoành độ tiếp điểm là $x_0$

Hệ số góc của tiếp tuyến tại tiếp điểm là:

\(f'(x_0)=x_0^2-4x_0+3\)

Vì tt song song với \(y=3x-\frac{20}{3}\Rightarrow f'(x_0)=3\)

\(\Leftrightarrow x_0^2-4x_0+3=3\Leftrightarrow x_0=0; 4\)

Khi đó: PTTT là:

\(\left[{}\begin{matrix}y=3\left(x-0\right)+f\left(0\right)=3x+4\\y=3\left(x-4\right)+f\left(4\right)=3x-\dfrac{20}{3}\end{matrix}\right.\) (đt 2 loại vì trùng )

Do đó \(y=3x+4\Rightarrow \) đáp án A

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Câu 3:

PT hoành độ giao điểm:

\(\frac{2x+1}{x-1}-(-x+m)=0\)

\(\Leftrightarrow x^2+(1-m)x+(m+1)=0\) (1)

Để 2 ĐTHS cắt nhau tại hai điểm pb thì (1) phải có hai nghiệm phân biệt

\(\Leftrightarrow \Delta=(1-m)^2-4(m+1)> 0\)

\(\Leftrightarrow m^2-6m-3> 0\)

\(\Leftrightarrow\left[{}\begin{matrix}m< 3-2\sqrt{3}\\m>3+2\sqrt{3}\end{matrix}\right.\)

Kết hợp với m nguyên và \(m\in (0;10)\Rightarrow m=7;8;9\)

Có 3 giá trị m thỏa mãn.

NV
7 tháng 10 2020

1.

Tiếp tuyến vuông góc với \(y=-x+2017\) nên có hệ số góc \(k=\frac{-1}{-1}=1\)

\(y'=3x^2-4x+2=1\)

\(\Rightarrow3x^2-4x+1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow x_1+x_2=1+\frac{1}{3}=\frac{4}{3}\)

2.

Tiếp tuyến song song Ox nên có hệ số góc \(k=0\)

\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

3.

\(y'=x^2+6x=-9\Rightarrow\left(x+3\right)^2=0\Rightarrow x=-3\Rightarrow y=16\)

Pt tiếp tuyến: \(y=-9\left(x+3\right)+16=-9x-11\)

4.

Tiếp tuyến vuông góc \(y=\frac{1}{9}x+2017\) có hệ số góc \(k=\frac{-1}{\frac{1}{9}}=-9\)

\(y'=-3x^2+6x=-9\Leftrightarrow3x^2-6x-9=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

Có 2 tiếp điểm nên có 2 tiếp tuyến thỏa mãn

24 tháng 9 2020

Mọi người giải nhanh giúp mình mấy câu này với ạ

25 tháng 9 2020

Mọi người giúp mình giải mấy câu này với ạ

NV
20 tháng 4 2019

\(y'=x^2-\left(3m+2\right)x+2m^2+3m+1\)

\(\Delta=\left(3m+2\right)^2-4\left(2m^2+3m+1\right)=m^2\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3m+2+m}{2}=2m+1\\x_2=\frac{3m+2-m}{2}=m+1\end{matrix}\right.\)

Để hàm số có cực đại, cực tiểu \(\Rightarrow x_1\ne x_2\Rightarrow m\ne0\)

- Nếu \(m>0\Rightarrow2m+1>m+1\Rightarrow\left\{{}\begin{matrix}x_{CĐ}=m+1\\x_{CT}=2m+1\end{matrix}\right.\)

\(\Rightarrow3\left(m+1\right)^2=4\left(2m+1\right)\) \(\Rightarrow3m^2-2m-1=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\frac{1}{3}< 0\left(l\right)\end{matrix}\right.\)

- Nếu \(m< 0\Rightarrow m+1>2m+1\Rightarrow\left\{{}\begin{matrix}x_{CĐ}=2m+1\\x_{CT}=m+1\end{matrix}\right.\)

\(\Rightarrow3\left(2m+1\right)^2=4\left(m+1\right)\Rightarrow12m^2+8m-1=0\)

\(\Rightarrow\left[{}\begin{matrix}m=\frac{-2+\sqrt{7}}{6}>0\left(l\right)\\m=\frac{-2-\sqrt{7}}{6}\end{matrix}\right.\) \(\Rightarrow\sum m=\frac{4-\sqrt{7}}{6}\)

31 tháng 3 2017

a) Xét hàm số y = f(x)=12x4−3x2+32f(x)=12x4−3x2+32 (C) có tập xác định: D = R

y’ = 2x3 – 6x = 2x(x2 – 3)

y’ = 0 ⇔ x = 0, x = ±√3

Bảng biến thiên:

Đồ thị hàm số:

b)

y’’ = 6x2 – 6x

y’’ = 0 ⇔ 6x2 – 6x = 0 ⇔ x = ± 1

y’(-1) = 4, y’’(1) = -4, y(± 1) = -1

Tiếp tuyến của (C) tại điểm (-1, -1) là : y = 4(x+1) – 1= 4x+3

Tiếp tuyến của (C) tại điểm (1, -1) là: y = -4(x-1) – 1 = -4x + 3

c) Ta có: \(x^4-6x^2+3=m\)\(\Leftrightarrow\dfrac{x^4}{2}-3x^2+\dfrac{3}{2}=\dfrac{m}{2}\).

Số nghiệm của (1) là số giao điểm của (C) và đường thẳng (d) : \(y=\dfrac{m}{2}\).

Dễ thấy:

m < -6: ( 1) vô nghiệm

m = -6 : (1) có 2 nghiệm

-6 < m < 3: (1) có 4 nghiệm

m = 3: ( 1) có 3 nghiệm

m > 3: (1) có 2 nghiệm

 

NV
13 tháng 8 2020

5.

\(y'=1-\frac{4}{\left(x-3\right)^2}=0\Leftrightarrow\left(x-3\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=1< 3\left(l\right)\end{matrix}\right.\)

BBT:

Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

Từ BBT ta có \(y_{min}=y\left(5\right)=7\)

\(\Rightarrow m=7\)

NV
13 tháng 8 2020

3.

\(y'=-2x^2-6x+m\)

Hàm đã cho nghịch biến trên R khi và chỉ khi \(y'\le0;\forall x\)

\(\Leftrightarrow\Delta'=9+2m\le0\)

\(\Rightarrow m\le-\frac{9}{2}\)

4.

\(y'=x^2-mx-2m-3\)

Hàm đồng biến trên khoảng đã cho khi và chỉ khi \(y'\ge0;\forall x>-2\)

\(\Leftrightarrow x^2-mx-2m-3\ge0\)

\(\Leftrightarrow x^2-3\ge m\left(x+2\right)\Leftrightarrow m\le\frac{x^2-3}{x+2}\)

\(\Leftrightarrow m\le\min\limits_{x>-2}\frac{x^2-3}{x+2}\)

Xét \(g\left(x\right)=\frac{x^2-3}{x+2}\) trên \(\left(-2;+\infty\right)\Rightarrow g'\left(x\right)=\frac{x^2+4x+3}{\left(x+2\right)^2}=0\Rightarrow x=-1\)

\(g\left(-1\right)=-2\Rightarrow m\le-2\)

31 tháng 3 2017

a) y = x3 + 3x2 + 1

Tập xác định: D = R

y’= 3x2 + 6x = 3x(x+ 2)

y’=0 ⇔ x = 0, x = -2

Bảng biến thiên:

Đồ thị hàm số:

b) Số nghiệm của phương trình \(x^3+3x^2+1=\dfrac{m}{2}\) chính là số giao điểm của (C) và đường thẳng (d): \(y=\dfrac{m}{2}\) (đường thẳng (d) vuông góc với Oy và cắt Oy tại \(\dfrac{m}{2}\) )

Từ đồ thị ta thấy:

- Với \(\dfrac{m}{2}< 1\Leftrightarrow m< 2\) : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

- Với \(\dfrac{m}{2}=1\Leftrightarrow m=2\) : (d) tiếp xúc với (C) tại 1 điểm và cắt (C) tạo 1 điểm, phương trình có hai nghiệm.

- Với \(1< \dfrac{m}{2}< 5\)\(\Leftrightarrow2< m< 10\)

- Với \(\dfrac{m}{2}=5\Leftrightarrow m=10\): (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, phương trình có hai nghiệm.

- Với  \(\dfrac{m}{2}>5\Leftrightarrow m>10\): (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

c) Điểm cực đại (-2, 5), điểm cực tiểu (0, 1).

Đường thẳng đi qua hai điểm này có phương trình là: 1\(y-14=x-2\Leftrightarrow y=x+12\).

 

31 tháng 3 2017

a) y = x3 + 3x2 + 1

Tập xác định: D = R

y’= 3x2 + 6x = 3x(x+ 2)

y’=0 ⇔ x = 0, x = -2

Bảng biến thiên:

Đồ thị hàm số:

b) Số nghiệm của phương trình x^3+3x^2+1=m/2chính là số giao điểm của (C) và đường thẳng (d): y=m/2 (đường thẳng (d) vuông góc với Oy và cắt Oy tại )

Từ đồ thị ta thấy:

- Với m/2<1⇔m<2: (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

- Với m/2=1⇔ m = 2: (d) tiếp xúc với (C) tại 1 điểm và cắt (C) tạo 1 điểm, phương trình có hai nghiệm

- Với 1<m/2<5⇔ 2<m

- Với m/2=5⇔m=10: (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, phương trình có hai nghiệm.

- Với m/2>5⇔m>10 : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

c) Điểm cực đại (-2, 5), điểm cực tiểu (0, 1).

Đường thẳng đi qua hai điểm này có phương trình là: y−14=x−2⇔y=−2x+1


31 tháng 3 2017

a) Tập xác định : D = R

limx→−∞f(x)=+∞limx→+∞f(x)=−∞y′=−3x2+6x+9=0⇔x=−1,x=3limx→−∞⁡f(x)=+∞limx→+∞⁡f(x)=−∞y′=−3x2+6x+9=0⇔x=−1,x=3

Bảng biến thiên:

Đồ thị hàm số:

b) y=f(x) = f(x) = -x3+3x2+9x+2.

f’(x) = -3x2+6x+9. Do đó:

f’(x-1)=-3(x-1)2+6(x-1)+9

= -3x2 + 12x = -3x(x-4) > 0 ⇔ 0 < x < 4

c) f’’(x) = -6x+6

f’’(x0) = -6 ⇔ -6x0 + 6 = -6 ⇔ x0 = 2

Do đó: f’(2) = 9, f(2) = 24. Phương trình tiếp tuyến của (C) tại x0 = 2 là:

y=f’(2)(x-2) + f(2) hay y = 9x+6

AH
Akai Haruma
Giáo viên
11 tháng 8 2017

Lời giải:

Sử dụng công thức \(\log_ab=\frac{\ln b}{\ln a}\)

\(\Rightarrow A=\frac{\ln 2}{\ln 3}.\frac{\ln 3}{\ln 4}.\frac{\ln 4}{\ln 5}....\frac{\ln 15}{\ln 16}\)

\(\Leftrightarrow A=\frac{\ln 2}{\ln 16}=\log_{16}2=\frac{1}{4}\)

Đáp án C.

31 tháng 3 2017

a) Điểm (-1 ; 1) thuộc đồ thị của hàm số ⇔ .

b) m = 1 . Tập xác định : R.

y' = 0 ⇔ x = 0.

Bảng biến thiên:

Đồ thị như hình bên.

c) Vậy hai điểm thuộc (C) có tung độ là A(1 ; ) và B(-1 ; ). Ta có y'(-1) = -2, y'(1) = 2.

Phương trình tiếp tuyến với (C) tại A là : y - = y'(1)(x - 1) ⇔ y = 2x -

Phương trình tiếp tuyến với (C) tại B là : y - = y'(-1)(x + 1) ⇔ y = -2x - .